Suppr超能文献

使用基于磁共振成像(MRI)的新型肿瘤扩散图谱预测脑肿瘤生长模式:在放射治疗计划中的应用

Predicting brain tumour growth patterns using a novel MRI-based tumour spread map: application to radiotherapy planning.

作者信息

Abbasian Parandoush, Ryner Lawrence, McCurdy Boyd, Kakumanu Saranya, Essig Marco, Venugopal Niranjan, Guan James, Pitz Marshall

机构信息

Physics and Astronomy, University of Manitoba, Winnipeg, Canada.

Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Canada.

出版信息

Med Phys. 2025 May;52(5):2909-2921. doi: 10.1002/mp.17640. Epub 2025 Jan 25.

Abstract

BACKGROUND

The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.

PURPOSE

In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.

METHODS

In this proof-of-concept study, we visualized the white matter fiber tract pathways within the brain using diffusion tensor tractography and developed an algorithm which mathematically calculates a relative probability index in each voxel, resulting in the generation of the TS map. Based on the information provided by the TS map, the original radiotherapy target volume was then modified to include areas with a higher probability of tumour spread and exclude other areas with a lower probability of spread. A volumetric modulated arc therapy (VMAT) treatment plan was then developed utilizing the modified target volumes and subsequently compared to that using the original target volumes. Follow-up anatomical imaging obtained 8 months post-surgery was assessed to validate our findings.

RESULTS

A TS map was generated on a glioblastoma patient demonstrating a relative probability of tumour spread along fiber tracts throughout the brain. The modified planning target volume better covered brain regions with a higher risk of tumour spread while still demonstrating a 21% reduction in volume compared to the original planning target volume, resulting in greater preservation of normal tissue. The modified VMAT plan resulted in an average mean dose to four identified recurrences of 80% of the prescription dose, while the original VMAT plan delivered only 63% of the prescription dose as the average mean dose to the recurrences.

CONCLUSION

The utilization of tractography and the generation of corresponding TS maps offer a promising approach to predicting patterns of tumour recurrence and optimizing treatment delivery. Further research is needed to validate the predictive value of the TS map on a larger cohort of patients and explore its potential in personalized treatment strategies for GBM patients.

摘要

背景

由于胶质母细胞瘤(GBM)具有侵袭性且在正常脑组织内复发率高,因此用放射治疗这类肿瘤极具挑战性。

目的

在本研究中,我们提出了一种名为肿瘤扩散(TS)图的新指标,它利用扩散张量成像(DTI)来预测肿瘤细胞沿纤维束扩散的可能方向。我们假设TS图可作为一种预测工具,用于识别GBM患者可能的复发模式,从而用于调整放射治疗方案,以预先靶向肿瘤扩散风险高的区域。

方法

在这项概念验证研究中,我们使用扩散张量纤维束成像可视化脑内的白质纤维束通路,并开发了一种算法,通过数学计算每个体素中的相对概率指数,从而生成TS图。根据TS图提供的信息,然后修改原始放疗靶区体积,纳入肿瘤扩散概率较高的区域,并排除其他扩散概率较低的区域。接着利用修改后的靶区体积制定容积调强弧形放疗(VMAT)治疗计划,并将其与使用原始靶区体积制定的计划进行比较。对术后8个月获得的随访解剖成像进行评估,以验证我们的发现。

结果

在一名胶质母细胞瘤患者身上生成了TS图,显示了肿瘤沿整个脑内纤维束扩散的相对概率。修改后的计划靶区体积更好地覆盖了肿瘤扩散风险较高的脑区,同时与原始计划靶区体积相比,体积仍减少了21%,从而更大程度地保留了正常组织。修改后的VMAT计划使四个已确定复发灶的平均平均剂量达到处方剂量的80%,而原始VMAT计划对复发灶的平均平均剂量仅为处方剂量的63%。

结论

利用纤维束成像和生成相应的TS图为预测肿瘤复发模式和优化治疗方案提供了一种有前景的方法。需要进一步研究以在更大的患者队列中验证TS图的预测价值,并探索其在GBM患者个性化治疗策略中的潜力。

相似文献

10
Memory Tract Sparing Using Diffusion Tensor Imaging in Radiation Planning of Primary Brain Tumors.
Pract Radiat Oncol. 2025 Jan-Feb;15(1):e3-e9. doi: 10.1016/j.prro.2024.08.005. Epub 2024 Sep 30.

本文引用的文献

5
Multi-scale segmentation in GBM treatment using diffusion tensor imaging.使用弥散张量成像进行 GBM 治疗中的多尺度分割。
Comput Biol Med. 2020 Aug;123:103815. doi: 10.1016/j.compbiomed.2020.103815. Epub 2020 May 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验