文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于多发性骨髓瘤动态预测的多个非线性纵向和竞争风险结果的贝叶斯联合模型:联合估计和校正两阶段方法

A Bayesian Joint Model of Multiple Nonlinear Longitudinal and Competing Risks Outcomes for Dynamic Prediction in Multiple Myeloma: Joint Estimation and Corrected Two-Stage Approaches.

作者信息

Alvares Danilo, Barrett Jessica K, Mercier François, Roumpanis Spyros, Yiu Sean, Castro Felipe, Schulze Jochen, Zhu Yajing

机构信息

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Stat Med. 2025 Feb 10;44(3-4):e10322. doi: 10.1002/sim.10322.


DOI:10.1002/sim.10322
PMID:39865588
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11771571/
Abstract

Predicting cancer-associated clinical events is challenging in oncology. In Multiple Myeloma (MM), a cancer of plasma cells, disease progression is determined by changes in biomarkers, such as serum concentration of the paraprotein secreted by plasma cells (M-protein). Therefore, the time-dependent behavior of M-protein and the transition across lines of therapy (LoT), which may be a consequence of disease progression, should be accounted for in statistical models to predict relevant clinical outcomes. Furthermore, it is important to understand the contribution of the patterns of longitudinal biomarkers, upon each LoT initiation, to time-to-death or time-to-next-LoT. Motivated by these challenges, we propose a Bayesian joint model for trajectories of multiple longitudinal biomarkers, such as M-protein, and the competing risks of death and transition to the next LoT. Additionally, we explore two estimation approaches for our joint model: simultaneous estimation of all parameters (joint estimation) and sequential estimation of parameters using a corrected two-stage strategy aiming to reduce computational time. Our proposed model and estimation methods are applied to a retrospective cohort study from a real-world database of patients diagnosed with MM in the US from January 2015 to February 2022. We split the data into training and test sets in order to validate the joint model using both estimation approaches and make dynamic predictions of times until clinical events of interest, informed by longitudinally measured biomarkers and baseline variables available up to the time of prediction.

摘要

在肿瘤学中,预测癌症相关的临床事件具有挑战性。在多发性骨髓瘤(MM)中,一种浆细胞癌,疾病进展由生物标志物的变化决定,例如浆细胞分泌的副蛋白(M蛋白)的血清浓度。因此,在预测相关临床结果的统计模型中,应考虑M蛋白的时间依赖性行为以及治疗线(LoT)之间的转换,这可能是疾病进展的结果。此外,了解每次LoT开始时纵向生物标志物模式对死亡时间或下次LoT时间的贡献也很重要。受这些挑战的推动,我们提出了一种贝叶斯联合模型,用于多个纵向生物标志物(如M蛋白)的轨迹以及死亡和转换到下一个LoT的竞争风险。此外,我们探索了两种联合模型的估计方法:同时估计所有参数(联合估计)和使用校正的两阶段策略顺序估计参数,旨在减少计算时间。我们提出的模型和估计方法应用于一项回顾性队列研究,该研究来自2015年1月至2022年2月在美国诊断为MM的患者的真实世界数据库。我们将数据分为训练集和测试集,以便使用两种估计方法验证联合模型,并根据纵向测量的生物标志物和预测时可用的基线变量,对感兴趣的临床事件发生时间进行动态预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/f21bb70015fa/SIM-44-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/48eec5df9b06/SIM-44-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/255e001869b3/SIM-44-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/558f0356d863/SIM-44-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/9d7f8b7e8b72/SIM-44-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/f21bb70015fa/SIM-44-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/48eec5df9b06/SIM-44-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/255e001869b3/SIM-44-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/558f0356d863/SIM-44-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/9d7f8b7e8b72/SIM-44-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6158/11771571/f21bb70015fa/SIM-44-0-g004.jpg

相似文献

[1]
A Bayesian Joint Model of Multiple Nonlinear Longitudinal and Competing Risks Outcomes for Dynamic Prediction in Multiple Myeloma: Joint Estimation and Corrected Two-Stage Approaches.

Stat Med. 2025-2-10

[2]
Early M-Protein Dynamics Predicts Progression-Free Survival in Patients With Relapsed/Refractory Multiple Myeloma.

Clin Transl Sci. 2020-11

[3]
Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model.

PLoS One. 2017-7-19

[4]
Bayesian joint modelling of longitudinal and time to event data: a methodological review.

BMC Med Res Methodol. 2020-4-26

[5]
Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach.

Stat Med. 2016-2-10

[6]
Bayesian blockwise inference for joint models of longitudinal and multistate data with application to longitudinal multimorbidity analysis.

Stat Methods Med Res. 2024-11

[7]
Dynamic prediction of competing risk events using landmark sub-distribution hazard model with multiple longitudinal biomarkers.

Stat Methods Med Res. 2020-11

[8]
Semiparametric transformation models for semicompeting survival data.

Biometrics. 2014-9

[9]
Bayesian Individual Dynamic Predictions with Uncertainty of Longitudinal Biomarkers and Risks of Survival Events in a Joint Modelling Framework: a Comparison Between Stan, Monolix, and NONMEM.

AAPS J. 2020-2-19

[10]
Towards quantitative imaging biomarkers of tumor dissemination: A multi-scale parametric modeling of multiple myeloma.

Med Image Anal. 2019-10

本文引用的文献

[1]
Bayesian blockwise inference for joint models of longitudinal and multistate data with application to longitudinal multimorbidity analysis.

Stat Methods Med Res. 2024-11

[2]
Bayesian survival analysis with INLA.

Stat Med. 2024-9-10

[3]
Bridging the gap between two-stage and joint models: The case of tumor growth inhibition and overall survival models.

Stat Med. 2024-7-30

[4]
High-risk multiple myeloma: Redefining genetic, clinical, and functional high-risk disease in the era of molecular medicine and immunotherapy.

Am J Hematol. 2024-8

[5]
Comparison of two-stage and joint TGI-OS modeling using data from six atezolizumab clinical studies in patients with metastatic non-small cell lung cancer.

CPT Pharmacometrics Syst Pharmacol. 2024-1

[6]
Global burden of hematologic malignancies and evolution patterns over the past 30 years.

Blood Cancer J. 2023-5-17

[7]
Conditional survival in multiple myeloma and impact of prognostic factors over time.

Blood Cancer J. 2023-5-15

[8]
Implications and prognostic impact of mass spectrometry in patients with newly-diagnosed multiple myeloma.

Blood Cancer J. 2023-1-4

[9]
Tumor Dynamic Model-Based Decision Support for Phase Ib/II Combination Studies: A Retrospective Assessment Based on Resampling of the Phase III Study IMpower150.

Clin Cancer Res. 2023-3-14

[10]
Joint models for dynamic prediction in localised prostate cancer: a literature review.

BMC Med Res Methodol. 2022-9-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索