Qi Jun, Xia Yongming, Meng Xiangtong, Li Jiachun, Yang Shilin, Zou Hongqi, Ma Yangjun, Zhang Yong, Du Yadong, Zhang Lipeng, Lin Zhiqun, Qiu Jieshan
State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Adv Mater. 2025 Mar;37(10):e2419058. doi: 10.1002/adma.202419058. Epub 2025 Jan 26.
The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.0% over cation vacancies-rich cobalt selenide catalyst is reported, showcasing unprecedented activity (1.477 V vs. RHE) to achieve an industrial-level current density of 1.5 A cm, and featuring a robust operating durability (≈170 h). In particular, when combining butane-1,4-diol monomer oxidation (BOR) with hydrogen evolution using the cation vacancy-engineered cobalt selenide as bifunctional catalyst, a relatively low cell voltage of 1.681 V is required to reach 400 mA cm, manifesting an energy-saving efficiency of ≈15% compared to pure water splitting. The mechanism and reaction pathways of BOR over the vacancies-rich catalyst are first revealed through theoretical calculations and in-situ spectroscopic investigations. The generality of this catalyst is evidenced by its powerful electrocatalytic activity to other polyester thermoplastics such as poly(butylene succinate) and poly(ethylene terephthalate). These electrocatalytic upcycling strategies can be coupled with the reduction of small molecules (e.g., HO, CO, and NO ), shedding light on energy-saving production of value-added chemicals.
在过去几十年中,塑料的积累量不断增加,这带来了严峻的环境危机。在各种解决方案中,将塑料转化为高附加值产品是一项重要的努力。在此,报道了一种电催化升级循环路线,该路线可通过富含阳离子空位的硒化钴催化剂将废弃聚对苯二甲酸丁二醇酯塑料高效转化为高价值的琥珀酸,法拉第效率高达94.0%,展示出前所未有的活性(相对于可逆氢电极,电位为1.477 V),以实现1.5 A cm的工业级电流密度,并且具有强大的操作耐久性(约170小时)。特别地,当使用阳离子空位工程化的硒化钴作为双功能催化剂将1,4-丁二醇单体氧化(BOR)与析氢相结合时,达到400 mA cm需要相对较低的电池电压1.681 V,与纯水分解相比,节能效率约为15%。通过理论计算和原位光谱研究首次揭示了富空位催化剂上BOR的机理和反应途径。这种催化剂对其他聚酯热塑性塑料如聚丁二酸丁二醇酯和聚对苯二甲酸乙二酯具有强大的电催化活性,证明了其通用性。这些电催化升级循环策略可以与小分子(如HO、CO和NO)的还原相结合,为增值化学品的节能生产提供了思路。