Suppr超能文献

使用随机森林模型和受限立方样条分析对白血病患者进行全面的脓毒症风险预测

Comprehensive Sepsis Risk Prediction in Leukemia Using a Random Forest Model and Restricted Cubic Spline Analysis.

作者信息

Kou Yanqi, Tian Yuan, Ha Yanping, Wang Shijie, Sun Xiaobai, Lv Shuxin, Luo Botao, Yang Yuping, Qin Ling

机构信息

Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, People's Republic of China.

Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang City, Guangdong Province, People's Republic of China.

出版信息

J Inflamm Res. 2025 Jan 22;18:1013-1032. doi: 10.2147/JIR.S505813. eCollection 2025.

Abstract

BACKGROUND

Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.

METHODS

This retrospective study included 4310 leukemia patients admitted to the Affiliated Hospital of Guangdong Medical University from 2005 to 2024, using 70% for training and 30% for validation. Feature selection was performed using univariate logistic regression, LASSO, and the Boruta algorithm, followed by multivariate logistic regression analysis. Seven machine learning models were constructed and evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Shapley additive explanations (SHAP) were applied to interpret the results, and restricted cubic spline (RCS) regression explored the nonlinear relationships between variables and sepsis risk. Furthermore, we examined the interactions among predictors to better understand their potential interrelationships.

RESULTS

The random forest (RF) model outperformed all others, achieving an AUC of 0.765 in the training cohort and 0.700 in the validation cohort. Key predictors of sepsis identified by SHAP analysis included C-reactive protein (CRP), procalcitonin (PCT), neutrophil count (Neut), lymphocyte count (Lymph), thrombin time (TT), red blood cell count (RBC), total bile acid (TBA), and systolic blood pressure (SBP). RCS analysis revealed significant non-linear associations between CPR, PCT, Neut, Lymph, TT, RBC and SBP with sepsis risk. Pairwise correlation analysis further revealed interactions among these variables.

CONCLUSION

The RF model exhibited robust predictive power for sepsis in leukemia patients, providing clinicians with a valuable tool for early risk assessment and the optimization of treatment strategies.

摘要

背景

脓毒症是白血病患者的一种严重并发症,导致高死亡率。识别脓毒症的早期预测指标对于及时干预至关重要。本研究旨在使用机器学习技术开发并验证白血病患者脓毒症风险的预测模型。

方法

这项回顾性研究纳入了2005年至2024年在广东医科大学附属医院住院的4310例白血病患者,其中70%用于训练,30%用于验证。采用单因素逻辑回归、LASSO和Boruta算法进行特征选择,随后进行多因素逻辑回归分析。构建了七个机器学习模型,并使用受试者工作特征(ROC)曲线和决策曲线分析(DCA)进行评估。应用Shapley加法解释(SHAP)来解释结果,并使用受限立方样条(RCS)回归探索变量与脓毒症风险之间的非线性关系。此外,我们检查了预测指标之间的相互作用,以更好地了解它们潜在的相互关系。

结果

随机森林(RF)模型的表现优于所有其他模型,在训练队列中的AUC为0.765,在验证队列中的AUC为0.700。SHAP分析确定的脓毒症关键预测指标包括C反应蛋白(CRP)、降钙素原(PCT)、中性粒细胞计数(Neut)、淋巴细胞计数(Lymph)、凝血酶时间(TT)、红细胞计数(RBC)、总胆汁酸(TBA)和收缩压(SBP)。RCS分析显示CPR、PCT、Neut、Lymph、TT、RBC和SBP与脓毒症风险之间存在显著的非线性关联。成对相关性分析进一步揭示了这些变量之间的相互作用。

结论

RF模型对白血病患者的脓毒症具有强大的预测能力,为临床医生提供了一个有价值的工具,用于早期风险评估和优化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac7/11766288/ec469574879a/JIR-18-1013-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验