Suppr超能文献

与疾病相关的Kv1.3变体能量受损,新生链折叠受损。

Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding.

作者信息

Sykes Aaron, Caruth Lannawill, Setia Verma Shefali, Hoshi Toshinori, Deutsch Carol

出版信息

bioRxiv. 2025 Feb 3:2025.01.17.631970. doi: 10.1101/2025.01.17.631970.

Abstract

Human Kv1.3, encoded by , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased "genome-first" approach to determine phenotype associations of specific rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.

摘要

由 编码的人类Kv1.3在神经元和免疫细胞中表达。其表达或功能受损会引发慢性炎症性疾病和自身免疫性疾病,疾病的严重程度与Kv1.3蛋白表达相关。Kv1.3胞质N端的亚基间识别结构域T1在新生蛋白附着于核糖体和/或内质网(ER)膜的早期生物合成过程中获得二级、三级和四级结构。在本研究中,我们探究T1中的天然基因变体是否与人类疾病相关,以及它们是否表现出早期折叠缺陷、能量不稳定性和亚基的构象畸变。我们采用三种方法:第一,采用无偏倚的“基因组优先”方法来确定特定罕见变体的表型关联。第二,我们使用生化分析来评估这些变体在早期生物合成过程中的早期三级和四级折叠以及膜结合情况。第三,我们对T1四聚体进行全原子分子动力学模拟,以评估野生型(WT)Kv1.3和单点变体R114G之间的结构宏观和能量稳定性差异。与野生型相比,几种天然变体的测量折叠概率和膜结合显著降低。模拟结果惊人地表明,R114G变体产生能量上更不稳定且动态的T1结构域,同时伴随着三级解旋和对称四聚体形成受损。我们的研究结果确定了罕见变体影响通道组装的分子机制,这可能导致人类疾病背后的多种临床表型。

相似文献

8
Transmembrane biogenesis of Kv1.3.Kv1.3的跨膜生物发生
Biochemistry. 2000 Feb 1;39(4):824-36. doi: 10.1021/bi991740r.
9
Tertiary interactions within the ribosomal exit tunnel.核糖体出口通道内的三级相互作用。
Nat Struct Mol Biol. 2009 Apr;16(4):405-11. doi: 10.1038/nsmb.1571. Epub 2009 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验