Suppr超能文献

对有和没有基于知识的剂量预测的妇科癌症患者进行每日自适应放疗的剂量学获益建模。

Modeling dosimetric benefits from daily adaptive RT for gynecological cancer patients with and without knowledge-based dose prediction.

作者信息

Ghimire Rupesh, Moore Lance, Branco Daniela, Rash Dominique L, Mayadev Jyoti S, Ray Xenia

机构信息

Department of Radiation Medicine and Applied Sciences, UC San Diego Health, La Jolla, California, USA.

出版信息

J Appl Clin Med Phys. 2025 Mar;26(3):e14596. doi: 10.1002/acm2.14596. Epub 2025 Jan 27.

Abstract

PURPOSE

Daily online adaptive radiotherapy (ART) improves dose metrics for gynecological cancer patients, but the on-treatment process is resource-intensive requiring longer appointments and additional time from the entire adaptive team. To optimize resource allocation, we propose a model to identify high-priority patients.

METHODS

For 49 retrospective cervical and endometrial cancer patients, we calculated two initial plans: the treated standard-of-care (Initial) and a reduced margin initial plan (Initial) for adapting with the Ethos treatment planning system. Daily doses corresponding to standard and reduced margins (Daily and Daily) were determined by re-segmenting the anatomy based on the treatment CBCT and calculating dose on a synthetic CT. These initial and daily doses were used to estimate the ART benefit ( = Daily-Daily) versus initial plan differences ( = Initial-Initial) via multivariate linear regression. Dosimetric benefits were modeled with initial plan differences ( ) of (cc), (Gy), and (Gy). Anatomy (intact uterus or post-hysterectomy), DoseType (simultaneous integrated boost [SIB] vs. single dose), and/or prescription value. To establish a logistic model, we classified the top 10% in each metric as high-benefit patients. We then built a logistic model to predict these patients from the previous predictors. Leave-one-out validation and ROC analysis were used to evaluate the accuracy. To improve the clinical efficiency of this predictive process, we also created knowledge-based plans for the ΔInitial plans ( ) and repeated the analysis.

RESULTS

In both and our multivariate analysis showed low R values 0.34-0.52 versus 0.14-0.38. The most significant predictor in each multivariate model was the corresponding ∆Initial metric (e.g., Bowel (V40 Gy), p < 1e-05). In the logistic model, the metrics with the strongest correlation to the high-benefit patients were (cc), (Gy), , and prescription. The models for original and knowledge-based plans had an AUC of 0.85 versus 0.78. The sensitivity and specificity were 0.92/0.72 and 0.69/0.80, respectively.

CONCLUSION

This methodology will allow clinics to prioritize patients for resource-intensive daily online ART.

摘要

目的

每日在线自适应放疗(ART)可改善妇科癌症患者的剂量指标,但治疗过程资源密集,需要更长的预约时间以及整个自适应团队投入额外时间。为了优化资源分配,我们提出了一种识别高优先级患者的模型。

方法

对于49例回顾性宫颈癌和子宫内膜癌患者,我们计算了两个初始计划:采用Ethos治疗计划系统进行适配的已治疗的标准治疗方案(初始方案)和缩小 margins 的初始计划(初始方案)。基于治疗CBCT对解剖结构进行重新分割,并在合成CT上计算剂量,从而确定对应标准 margins 和缩小 margins 的每日剂量(每日剂量和每日剂量)。通过多元线性回归,利用这些初始剂量和每日剂量来估计ART获益(=每日剂量 - 每日剂量)与初始计划差异(=初始方案 - 初始方案)。剂量学获益通过初始计划差异()为(cc)、(Gy)和(Gy)进行建模。解剖结构(完整子宫或子宫切除术后)、剂量类型(同步整合加量 [SIB] 与单次剂量)和/或处方值。为建立逻辑模型,我们将每个指标中排名前10%的患者归类为高获益患者。然后,我们构建了一个逻辑模型,根据先前的预测指标来预测这些患者。采用留一法验证和ROC分析来评估准确性。为提高这种预测过程的临床效率,我们还为Δ初始计划()创建了基于知识的计划,并重复了分析。

结果

在和中,我们的多变量分析显示R值较低,分别为0.34 - 0.52和0.14 - 0.38。每个多变量模型中最显著的预测指标是相应的∆初始指标(例如,肠(V40 Gy),p < 1e - 05)。在逻辑模型中,与高获益患者相关性最强的指标是(cc)、(Gy)、和处方。原始计划和基于知识的计划的模型AUC分别为0.85和0.78。敏感性和特异性分别为0.92/0.72和0.69/0.80。

结论

这种方法将使临床能够对资源密集型的每日在线ART患者进行优先级排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce85/11905257/cb69a4c16925/ACM2-26-e14596-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验