Raun Nicholas, Jones Spencer G, Kerr Olivia, Keung Crystal, Butler Emily F, Alka Kumari, Krupski Jonathan D, Reid-Taylor Robert A, Ibrahim Veyan, Williams MacKayla, Top Deniz, Kramer Jamie M
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
PLoS Biol. 2025 Jan 27;23(1):e3003004. doi: 10.1371/journal.pbio.3003004. eCollection 2025 Jan.
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.
表观遗传学和染色质在有丝分裂后神经元细胞身份维持中的作用尚未得到充分理解。在这里,我们表明,组蛋白甲基转移酶三胸节蛋白(Trx)在果蝇蘑菇体(MB)的有丝分裂后记忆神经元中是长期记忆(LTM)而非短期记忆(STM)所必需的。使用MB特异性RNA测序、染色质免疫沉淀测序(ChIP-seq)和转座酶可及染色质测序(ATAC-seq),我们发现Trx维持了几种非经典的富含MB的转录本的稳态表达,包括孤儿核受体Hr51和代谢酶乳酸脱氢酶(Ldh)。通过这些关键靶点,Trx促进了MBγ神经元中以高乳酸水平为特征的代谢状态。这种代谢状态支持了蛋白质翻译的高能力,而蛋白质翻译是LTM而非STM所必需的过程。这些数据表明,Trx作为发育过程中细胞类型特化的经典调节因子,在维持有丝分裂后神经元身份未被充分认识的方面(如代谢状态)具有额外的功能。我们的工作支持了一系列证据,表明高能量代谢能力是介导LTM的神经元的基本细胞身份特征。