Zhou Corey Y, Talmi Deborah, Daw Nathaniel D, Mattar Marcelo G
Department of Cognitive Science, University of California, San Diego.
Department of Psychology, University of Cambridge.
Psychol Rev. 2025 Jan;132(1):18-49. doi: 10.1037/rev0000505. Epub 2024 Dec 30.
It has long been hypothesized that episodic memory supports adaptive decision making by enabling mental simulation of future events. Yet, attempts to characterize this process are surprisingly rare. On one hand, memory research is often carried out in settings that are far removed from ecological contexts of decision making. On the other hand, models of adaptive choice only invoke episodic memory in highly stylized terms, if at all. To address these gaps, we propose TCM-SR, a novel process-level model that grounds model-based evaluation in empirically informed dynamics of episodic recall. In this model, the probability of retrieving each available memory is governed by the successor representation, a biologically plausible world model in reinforcement learning. The evolution of these probabilities based on past retrievals, in turn, is dictated by the temporal context model, a prominent model of episodic retrieval. Through simulations and analytical derivations, we show that the patterns of episodic retrieval suggested by this model enables flexible computation of decision variables. On this basis, a number of previously described features of episodic memory might serve an adaptive purpose in sequential decision making. For instance, we show that the contiguity effect, a well-known bias in episodic retrieval, enables mental simulation via model-based rollouts to inform decisions. We also show that backward retrieval and emotional modulation improve generalization and the efficiency of decisions given limited experience. By bridging computational models across these two domains, we make several theoretical and empirical predictions linking episodic memory to adaptive choice in sequential tasks. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
长期以来,人们一直假设情景记忆通过对未来事件进行心理模拟来支持适应性决策。然而,令人惊讶的是,很少有人尝试描述这一过程。一方面,记忆研究通常是在远离决策生态背景的环境中进行的。另一方面,适应性选择模型即使涉及情景记忆,也只是以高度程式化的方式进行。为了填补这些空白,我们提出了TCM-SR,这是一种新颖的过程级模型,它将基于模型的评估建立在情景回忆的经验性动态基础上。在这个模型中,检索每个可用记忆的概率由后继表征控制,后继表征是强化学习中一种生物学上合理的世界模型。这些概率基于过去的检索结果的演变,反过来又由时间背景模型决定,时间背景模型是情景检索的一个重要模型。通过模拟和分析推导,我们表明该模型提出的情景检索模式能够灵活计算决策变量。在此基础上,情景记忆中一些先前描述的特征可能在顺序决策中具有适应性目的。例如,我们表明,情景检索中一种著名的偏差——邻近效应,能够通过基于模型的展开进行心理模拟以指导决策。我们还表明,反向检索和情绪调节在经验有限的情况下能够提高决策的泛化能力和效率。通过在这两个领域之间搭建计算模型,我们做出了一些理论和实证预测,将情景记忆与顺序任务中的适应性选择联系起来。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)