Suppr超能文献

大语言模型的发展应该如何影响科学实践?

How should the advancement of large language models affect the practice of science?

作者信息

Binz Marcel, Alaniz Stephan, Roskies Adina, Aczel Balazs, Bergstrom Carl T, Allen Colin, Schad Daniel, Wulff Dirk, West Jevin D, Zhang Qiong, Shiffrin Richard M, Gershman Samuel J, Popov Vencislav, Bender Emily M, Marelli Marco, Botvinick Matthew M, Akata Zeynep, Schulz Eric

机构信息

Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.

Helmholtz Center for Computational Health, Munich, Oberschleißheim, Bayern 85764, Germany.

出版信息

Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2401227121. doi: 10.1073/pnas.2401227121. Epub 2025 Jan 27.

Abstract

Large language models (LLMs) are being increasingly incorporated into scientific workflows. However, we have yet to fully grasp the implications of this integration. How should the advancement of large language models affect the practice of science? For this opinion piece, we have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate. Schulz et al. make the argument that working with LLMs is not fundamentally different from working with human collaborators, while Bender et al. argue that LLMs are often misused and overhyped, and that their limitations warrant a focus on more specialized, easily interpretable tools. Marelli et al. emphasize the importance of transparent attribution and responsible use of LLMs. Finally, Botvinick and Gershman advocate that humans should retain responsibility for determining the scientific roadmap. To facilitate the discussion, the four perspectives are complemented with a response from each group. By putting these different perspectives in conversation, we aim to bring attention to important considerations within the academic community regarding the adoption of LLMs and their impact on both current and future scientific practices.

摘要

大型语言模型(LLMs)正越来越多地融入科学工作流程。然而,我们尚未完全理解这种整合的影响。大型语言模型的发展将如何影响科学实践?在这篇观点文章中,我们邀请了四组不同的科学家来思考这个问题,分享他们的观点并展开辩论。舒尔茨等人认为,使用大型语言模型与与人类合作者合作在本质上没有区别,而本德等人则认为大型语言模型经常被滥用和过度炒作,其局限性使得我们应专注于更专业、易于解释的工具。马雷利等人强调了对大型语言模型进行透明归因和负责任使用的重要性。最后,博特温尼克和格什曼主张人类应保留确定科学路线图的责任。为便于讨论,四组观点都配有各自的回应。通过将这些不同观点放在一起探讨,我们旨在引起学术界对采用大型语言模型及其对当前和未来科学实践的影响等重要考量的关注。

相似文献

1
How should the advancement of large language models affect the practice of science?大语言模型的发展应该如何影响科学实践?
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2401227121. doi: 10.1073/pnas.2401227121. Epub 2025 Jan 27.

引用本文的文献

1
Cyber-Creativity: A Decalogue of Research Challenges.网络创造力:研究挑战十诫
J Intell. 2025 Aug 13;13(8):103. doi: 10.3390/jintelligence13080103.
3
The benefits and dangers of anthropomorphic conversational agents.拟人化对话代理的益处与风险。
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2415898122. doi: 10.1073/pnas.2415898122. Epub 2025 May 16.
6
Automating the practice of science: Opportunities, challenges, and implications.科学实践的自动化:机遇、挑战与影响。
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2401238121. doi: 10.1073/pnas.2401238121. Epub 2025 Jan 27.
7
Dialogues about the practice of science.关于科学实践的对话。
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2423782122. doi: 10.1073/pnas.2423782122. Epub 2025 Jan 27.

本文引用的文献

3
Large Language Models and the Wisdom of Small Crowds.大语言模型与小众群体的智慧
Open Mind (Camb). 2024 May 20;8:723-738. doi: 10.1162/opmi_a_00144. eCollection 2024.
4
Artificial intelligence and illusions of understanding in scientific research.人工智能与科研中的理解错觉。
Nature. 2024 Mar;627(8002):49-58. doi: 10.1038/s41586-024-07146-0. Epub 2024 Mar 6.
5
GPT-4 passes the bar exam.GPT-4通过了律师资格考试。
Philos Trans A Math Phys Eng Sci. 2024 Apr 15;382(2270):20230254. doi: 10.1098/rsta.2023.0254. Epub 2024 Feb 26.
9
Scientific discovery in the age of artificial intelligence.人工智能时代的科学发现。
Nature. 2023 Aug;620(7972):47-60. doi: 10.1038/s41586-023-06221-2. Epub 2023 Aug 2.
10
ChatGPT outperforms crowd workers for text-annotation tasks.在文本注释任务中,ChatGPT的表现优于众包工作者。
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305016120. doi: 10.1073/pnas.2305016120. Epub 2023 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验