Suppr超能文献

用于解码神经运动控制的时空变换器

Spatio-temporal transformers for decoding neural movement control.

作者信息

Candelori Benedetta, Bardella Giampiero, Spinelli Indro, Ramawat Surabhi, Pani Pierpaolo, Ferraina Stefano, Scardapane Simone

机构信息

Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy.

Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.

出版信息

J Neural Eng. 2025 Feb 4;22(1). doi: 10.1088/1741-2552/adaef0.

Abstract

. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activityremains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.

摘要

应用于高分辨率神经生理学数据的深度学习工具取得了显著进展,为实际应用提供了增强的解码、实时处理和可读性。然而,设计用于分析神经活动的人工神经网络仍然是一项挑战,需要在低数据量情况下的效率与结果的可解释性之间取得微妙平衡。为应对这一挑战,我们引入了一种新颖的专门变压器架构来分析单个神经元的尖峰活动。该模型在执行运动抑制任务的非人类灵长类动物背侧运动前皮层的多电极记录上进行了测试。所提出的架构能够对正确的运动方向进行早期预测,在动物中,在发出开始信号后不迟于230毫秒就能获得准确结果。此外,该模型可以在实际呈现停止信号之前预测运动是否会被产生或抑制,且无需关注。为了进一步了解模型的内部动态,我们计算了架构连续层中时间步之间以及神经元之间的预测相关性,这些相关性的演变反映了先前理论分析的结果。总体而言,我们的框架为深度学习工具在运动控制研究中的实际应用提供了一个全面的用例,突出了所提出架构的预测能力和可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验