McClean Zachary J, McKenzie Mark, Zukowski Matthew, Foley Landon, Pasanen Kati, Herzog Walter, Nabhan Dustin, Jordan Matthew J
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Integrative Neuromuscular Sport Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Int J Sports Physiol Perform. 2025 Jan 27;20(3):399-410. doi: 10.1123/ijspp.2024-0439. Print 2025 Mar 1.
Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.
University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass. A linear model was fit for the CMJ takeoff velocity-load relationship to obtain the load intercept. Force-velocity parameters were obtained for the CMJ eccentric deceleration and concentric phases. Linear mixed-effects models were constructed to predict concentric, isometric, and eccentric leg-press force using the CMJ takeoff velocity-load relationship and CMJ kinetics.
Isometric leg-press strength was predicted by load intercept and sex (P < .001, R2 = .565, prediction error = 14%). Concentric leg-press strength was predicted by load intercept, CMJ60 concentric impulse, and sex (P < .001, R2 = .657, prediction error = 10%). Eccentric leg-press strength was predicted by minimum downward velocity, CMJ60 eccentric deceleration impulse, and sex (P < .001, R2 = .359, prediction error = 14%).
Given the relevance of muscle-strength testing for sport performance and injury prevention, assessing force-velocity mechanics with loaded CMJ testing is a reliable and viable approach to predict maximal concentric, isometric, and eccentric leg-press strength in competitive athletes.
最大肌肉力量通常通过单关节或重复最大值测试来评估。本研究的目的是评估反向纵跳(CMJ)速度-负荷测试的可靠性,并评估CMJ速度-负荷动力学与在机器人伺服电机腿举机上测试的训练有素的运动员的向心-等长-离心多关节腿部伸展力量之间的关系。
大学运动员(N = 203;52%为女性)在机器人腿举机上完成3次向心、等长和离心最大自主腿部伸展收缩,随后进行CMJ速度-负荷测试,额外增加0%(CMJBW)、30%(CMJ30)和60%(CMJ60)体重的外部负荷。对CMJ起跳速度-负荷关系拟合线性模型以获得负荷截距。获取CMJ离心减速和向心阶段的力-速度参数。构建线性混合效应模型,使用CMJ起跳速度-负荷关系和CMJ动力学来预测向心、等长和离心腿举力。
等长腿举力量由负荷截距和性别预测(P <.001,R2 =.565,预测误差 = 14%)。向心腿举力量由负荷截距、CMJ60向心冲量和性别预测(P <.001,R2 =.657,预测误差 = 10%)。离心腿举力量由最小向下速度、CMJ60离心减速冲量和性别预测(P <.001,R2 =.359,预测误差 = 14%)。
鉴于肌肉力量测试对运动表现和损伤预防的相关性,通过负重CMJ测试评估力-速度力学是预测竞技运动员最大向心、等长和离心腿举力量的可靠且可行的方法。