Khariushin Ivan V, Thielert Philipp, Zöllner Elisa, Mayländer Maximilian, Quintes Theresia, Richert Sabine, Vargas Jentzsch Andreas
SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg, France.
Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
Nat Chem. 2025 Apr;17(4):493-499. doi: 10.1038/s41557-024-01716-5. Epub 2025 Jan 27.
Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing. For a triplet-radical pair to undergo spin mixing, the molecular bridge joining the spin centres must permit effective spin communication, which has previously been ensured using covalent, π-conjugated linkers. Here we used perylenediimides and nitroxide radicals designed to self-assemble in solution via hydrogen bonding and observed, using electron paramagnetic resonance spectroscopy, the formation of quartet states that can be manipulated coherently using microwaves. This unprecedented finding that non-covalent bonds can enable spin mixing advances supramolecular chemistry as a valuable tool for exploring, developing and scaling up materials for quantum information science.
分子自旋量子比特具有合成灵活性以及易于针对特定应用进行定制的优点。其中,发色团-自由基体系已成为有吸引力的量子比特候选物。这些体系可通过光引发形成三重态-自由基对,通过自旋混合可导致四重态的形成。对于三重态-自由基对发生自旋混合,连接自旋中心的分子桥必须允许有效的自旋通信,此前一直通过共价π共轭连接体来确保这一点。在这里,我们使用了通过氢键在溶液中自组装的苝二酰亚胺和氮氧化物自由基,并利用电子顺磁共振光谱观察到了四重态的形成,该四重态可用微波进行相干操纵。这一前所未有的发现,即非共价键能够实现自旋混合,推动了超分子化学成为探索、开发和扩大用于量子信息科学的材料的宝贵工具。