Suppr超能文献

发光有机自由基中的可逆自旋-光学界面。

Reversible spin-optical interface in luminescent organic radicals.

机构信息

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK.

出版信息

Nature. 2023 Aug;620(7974):538-544. doi: 10.1038/s41586-023-06222-1. Epub 2023 Aug 16.

Abstract

Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.

摘要

分子为量子信息科学提供了一个多功能平台,是传感和计算应用的候选者。稳健的自旋光学界面是利用材料量子资源的关键。迄今为止,基于碳的候选物是非发光的,这阻止了通过发射进行光学读出。在这里,我们报告了具有高效发光和激发态产率接近 1 的有机分子,其自旋多重性 S > 1。这是通过设计发射双重态和三重态之间的能量共振来实现的,这里是通过共价偶联的三(2,4,6-三氯苯基)甲基咔唑自由基和蒽来实现的。我们观察到,双重态光激发在几个皮秒内离域到连接的稠环芳烃上,随后演化为混合自由基-三重态特征的纯高自旋态(单核自由基为四重态,双核自由基为五重态)接近 1.8 eV。这些高自旋态即使在 295 K 下也可以用微波相干寻址,通过反向系间窜越到发射态实现光学读出。此外,对于双核自由基,在回到基态时,蒽两侧以前不相关的自由基自旋显示出强烈的自旋相关性。我们的方法同时支持在室温下初始化、自旋操纵和基于光的读出的高效率。发光和高自旋态的集成为新兴的量子技术创造了一个有机材料平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8cb/10432275/2b5c1a5374c5/41586_2023_6222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验