Suppr超能文献

使用通用数据元素将人工智能结果自动整合到放射学报告中。

Automated Integration of AI Results into Radiology Reports Using Common Data Elements.

作者信息

Mehdiratta Garv, Duda Jeffrey T, Elahi Ameena, Borthakur Arijitt, Chatterjee Neil, Gee James, Sagreiya Hersh, Witschey Walter R T, Kahn Charles E

机构信息

Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St., Philadelphia, PA, 19104, USA.

Information Services, University of Pennsylvania Health System, Philadelphia, PA, USA.

出版信息

J Imaging Inform Med. 2025 Jan 27. doi: 10.1007/s10278-025-01414-9.

Abstract

Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information. This article describes the application of CDEs as a standardized framework to embed AI-derived results into radiology reports. The authors defined a set of CDEs for measurements of the volume and attenuation of the liver and spleen. An AI system segmented the liver and spleen on non-contrast CT images of the abdomen and pelvis, and it recorded their measurements as CDEs using the Digital Imaging and Communications in Medicine Structured Reporting (DICOM-SR) framework to express the corresponding labels and values. The AI system successfully segmented the liver and spleen in non-contrast CT images and generated measurements of organ volume and attenuation. Automated systems extracted corresponding CDE labels and values from the AI-generated data, incorporated CDE values into the radiology report, and transmitted the generated image series to the Picture Archiving and Communication System (PACS) for storage and display. This study demonstrates the use of radiology CDEs in clinical practice to record and transfer AI-generated data. This approach can improve communication among radiologists and referring providers, harmonize data to enable large-scale research efforts, and enhance the performance of decision support systems. CDEs ensure consistency, interoperability, and clarity in reporting AI findings across diverse healthcare systems.

摘要

将人工智能(AI)整合到放射学实践中可以创造机会提高诊断准确性、工作流程效率和患者治疗效果。整合要求能够将人工智能得出的测量结果无缝纳入放射学报告中。通用数据元素(CDE)定义了标准化、可互操作的信息单元。本文描述了将CDE作为一个标准化框架,用于将人工智能得出的结果嵌入放射学报告中的应用。作者定义了一组用于测量肝脏和脾脏体积及衰减的CDE。一个人工智能系统在腹部和骨盆的非增强CT图像上对肝脏和脾脏进行分割,并使用医学数字成像和通信结构化报告(DICOM-SR)框架将其测量结果记录为CDE,以表达相应的标签和值。该人工智能系统成功地在非增强CT图像上分割了肝脏和脾脏,并生成了器官体积和衰减的测量结果。自动化系统从人工智能生成的数据中提取相应的CDE标签和值,将CDE值纳入放射学报告,并将生成的图像序列传输到图像存档与通信系统(PACS)进行存储和显示。本研究展示了放射学CDE在临床实践中用于记录和传输人工智能生成的数据。这种方法可以改善放射科医生与转诊医生之间的沟通,使数据协调一致以支持大规模研究工作,并提高决策支持系统的性能。CDE确保了在不同医疗系统中报告人工智能结果时的一致性、互操作性和清晰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验