Suppr超能文献

阴离子调制溶剂化鞘层和双电层实现-60至80°C的锂离子存储

Anion-Modulated Solvation Sheath and Electric Double Layer Enabling Lithium-Ion Storage From -60 to 80 °C.

作者信息

Yuan Song, Cao Shengkai, Chen Xi, Wei Jiaqi, Lv Zhisheng, Xia Huarong, Chen Lixun, Ng Rayner Bao Feng, Tan Fu Lun, Li Haicheng, Loh Xian Jun, Li Shuzhou, Feng Xue, Chen Xiaodong

机构信息

Institute of Flexible Electronics Technology of THU, Tsinghua University, Jiaxing, Zhejiang 314000, People's Republic of China.

Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

出版信息

J Am Chem Soc. 2025 Feb 5;147(5):4089-4099. doi: 10.1021/jacs.4c13011. Epub 2025 Jan 27.

Abstract

Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures. Herein, we report the use of the main lithium salt to simultaneously address interfacial challenges at both extremely high and low temperatures. This approach is different from the conventional solvent-mediated strategies. As a proof of concept, we utilized lithium nitrate (LiNO) to establish an anion-controlled solvation structure and electric double layer. The formulated electrolytes exhibited remarkable performance across temperature extremes, retaining 56.1% capacity at -60 °C and sustaining 400 stable cycles at 80 °C. In contrast, electrolytes based on current solvent-mediated strategies failed to operate at -60 °C and could not exceed 50 cycles at 80 °C. By shifting the focus to the main salt rather than the solvent, our work offers the possibility of addressing the enduring challenges of electrolyte stability across a broad temperature range.

摘要

当前的锂电池在极端温度条件下,无论是高温还是低温,都会出现显著的性能退化。传统的宽温电解质设计通常通过操纵溶剂化鞘层和选择具有极端熔点/沸点的溶剂来应对这些挑战。然而,这些基于溶剂的解决方案,虽然在一个温度极端下有效,但由于在宽温度范围内维持溶剂稳定性存在固有困难,在相反的温度极端下总是失效。在此,我们报告了使用主要锂盐同时解决极高和极低温度下的界面挑战。这种方法不同于传统的基于溶剂的策略。作为概念验证,我们利用硝酸锂(LiNO₃)建立了阴离子控制的溶剂化结构和双电层。配制的电解质在极端温度下表现出卓越的性能,在-60°C时保留56.1%的容量,并在80°C下维持400次稳定循环。相比之下,基于当前溶剂介导策略的电解质在-60°C时无法运行,在80°C时不能超过50次循环。通过将重点从溶剂转移到主要盐,我们的工作为解决宽温度范围内电解质稳定性这一长期挑战提供了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验