Li Menglu, An Hanwen, Song Yajie, Mo Shengkai, Peng Dakang, Liu Qingsong, Deng Biao, Wang Jiajun
MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
Natl Sci Rev. 2025 Aug 11;12(9):nwaf317. doi: 10.1093/nsr/nwaf317. eCollection 2025 Sep.
Long-endurance and high-power operation of lithium batteries in cryogenic conditions is important for broader aeronautical applications but is plagued by sluggish and mismatched interfacial kinetics at both electrodes. Herein, we report the concurrent control of the solvation sheath and interfacial chemistry through anion modulation, thereby addressing the challenges associated with charge transfer kinetics. Specifically, lithium bis(trimethylsilyl)amide (LiHMDS) serves as a salt anion adjuvant due to its steric hindrance and electron-donating properties. The spatial effect of LiHMDS induces the construction of weak bidentate coordination structures, promising a fast (de)solvation process. Moreover, electron reconfiguration within the Lewis acid-base (BF-HMDS) promotes the formation of inorganic-rich interphases, eliminating the migration barriers at both electrodes. Consequently, practical pouch cells achieve a high power density of 980.9 W kg and an energy density of 310.4 Wh kg at -40°C, facilitating high-speed cruising and rapid vertical take-offs and landings of reconnaissance drones in cold environments.
锂电池在低温条件下的长续航和高功率运行对于更广泛的航空应用至关重要,但却受到两个电极处缓慢且不匹配的界面动力学的困扰。在此,我们报告了通过阴离子调制对溶剂化鞘层和界面化学进行同时控制,从而解决与电荷转移动力学相关的挑战。具体而言,双(三甲基硅基)氨基锂(LiHMDS)由于其空间位阻和供电子性质而用作盐阴离子助剂。LiHMDS的空间效应诱导了弱双齿配位结构的构建,有望实现快速的(去)溶剂化过程。此外,路易斯酸碱(BF-HMDS)内的电子重新配置促进了富含无机相的形成,消除了两个电极处的迁移障碍。因此,实用的软包电池在-40°C时实现了980.9 W kg的高功率密度和310.4 Wh kg的能量密度,有助于侦察无人机在寒冷环境中进行高速巡航以及快速垂直起降。