Shu Yingge, Xie Shan, Fan Hong, Duan Chun, Liu Yuansheng, Chen Zuyong
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
PeerJ. 2025 Jan 24;13:e18683. doi: 10.7717/peerj.18683. eCollection 2025.
is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities. It provides a theoretical basis for soil quality evaluation in the study area and scientific guidance for tea plantation management, thus fostering the region's economic sustainability.
This study selected tea plantations with different tea planting durations of 3-5 years (Y5), 12-16 years (Y15), 18-22 years (Y20), 40-42 years (Y40), and 48-50 years (Y50), as research subjects and adjacent uncultivated forest without a history of tea planting (CK) served as controls. Soil organic carbon (SOC), particulate organic carbon (POC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and bacterial diversity were measured in the 0-20 cm and 20-40 cm soil layers, respectively.
Compared to the adjacent uncultivated forest (CK), the soil organic carbon (SOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), and dissolved organic carbon (DOC) contents in a 40-year tea plantation significantly increased. Nonetheless, the microbial biomass carbon (MBC) content notably decreased. POC/SOC ratios rose with prolonged planting, signifying enhanced conversion of organic carbon into particulate forms. Bacterial community diversity peaked at 15 years and declined by 40 years post-planting and after tea planting dominated by , , , and in the tea garden. FAPROTAX analysis highlighted aerobic and anaerobic chemoheterotrophy, cellulolysis, and nitrogen fixation as key bacterial functions. POC and MBC significantly influenced bacterial community structure. In conclusion, tea plantation soil exhibited the highest organic carbon content at 40 years of tea planting, indicating strong carbon accumulation capacity. However, soil acidification in the tea plantation may affect changes in organic carbon and bacterial community. Therefore, in the tea planting process, it is necessary to improve the management system of tea plantations to ensure the maintenance of a good ecological environment in the tea plantation soil, thus achieving sustainable development of the tea industry in the region.
茶树是中国西南地区重要的经济作物,土壤有机碳对土壤肥力起着至关重要的作用,微生物对养分循环有显著贡献,二者均影响茶树的生长发育。然而,现有研究主要集中在土壤有机碳,忽视了碳组分,且土壤有机碳组分与微生物群落之间的关系尚不清楚。因此,本研究旨在阐明不同茶树种植年限对土壤有机碳组分和微生物群落的影响,并确定影响微生物群落的主要因素。为研究区域的土壤质量评价提供理论依据,为茶园管理提供科学指导,促进该地区经济的可持续发展。
本研究选取了种植年限分别为3 - 5年(Y5)、12 - 16年(Y15)、18 - 22年(Y20)、40 - 42年(Y40)和48 - 50年(Y50)的茶园作为研究对象,以相邻无茶树种植历史的未开垦森林(CK)作为对照。分别测定了0 - 20 cm和20 - 40 cm土层的土壤有机碳(SOC)、颗粒有机碳(POC)、易氧化有机碳(EOC)、溶解有机碳(DOC)、微生物生物量碳(MBC)和细菌多样性。
与相邻未开垦森林(CK)相比,40年茶园的土壤有机碳(SOC)、易氧化碳(EOC)、颗粒有机碳(POC)和溶解有机碳(DOC)含量显著增加。然而,微生物生物量碳(MBC)含量显著下降。POC/SOC比值随种植年限延长而升高,表明有机碳向颗粒态的转化增强。细菌群落多样性在种植15年时达到峰值,种植40年后下降,茶园中以 、 、 和 为主。FAPROTAX分析表明,需氧和厌氧化学异养、纤维素分解和固氮是细菌的关键功能。POC和MBC显著影响细菌群落结构。总之,茶园土壤在种植40年时有机碳含量最高,表明其具有较强的碳积累能力。然而,茶园土壤酸化可能影响有机碳和细菌群落的变化。因此,在茶树种植过程中,有必要完善茶园管理体系,以确保茶园土壤保持良好的生态环境,从而实现该地区茶业的可持续发展。