Shrivastava Anuj, Patil Sanjeet S, Shah Rohan, Rathore Anurag S
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
BioDrugs. 2025 Mar;39(2):333-345. doi: 10.1007/s40259-025-00704-6. Epub 2025 Jan 28.
With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.
This study proposes a Python-based automated tool for rapid estimation of glycosimilarity index (GI).
A comprehensive analytical glycosimilarity comparison of the trastuzumab originator product, Herclon (Roche), with five marketed biosimilars:Trasturel (Reliance Life Sciences), Canmab (Biocon), Vivitra (Zydus Ingenia), Hertraz (Mylan), and Biceltis (Cipla), has been performed. Similarly, a comparison between the bevacizumab originator product, Avastin (Roche), and its five biosimilars: Abevmy (Mylan), Krabeva (Biocon), Ivzumab (RPG LifeSciences), Bryxta (Zydus), and Advamab (Alkem Labs), is presented. Glycan profile has been assessed using liquid chromatography-fluorescence detection, and the data have been integrated using the XGBoost-machine learning algorithm to quantify glycan composition. The GI has been calculated by combining profile similarity and compositional similarity, estimated on the basis of the criticality and tolerance of each glycan.
The tool enabled rapid GI estimation (< 1 min/sample) with reduced errors compared with Excel (> 10 min/sample). Biosimilars exhibited high GI with several exceeding 95%, while the lowest GI observed were 87.80% for trastuzumab and 92.39% for bevacizumab.
The Python-based tool offers a high-throughput and a reliable platform for glycosimilarity assessment, outperforming traditional analysis. Minor variations in glycosylation patterns were observed among the biosimilars, suggesting a modest glycosimilarity variation (GI range between 80 and 100%). However, the limited number of innovator batches analyzed constrained the establishment of definitive tolerance limits. Future studies should focus on analyzing larger datasets to improve accuracy and define precise tolerance limits, enhancing the tool's reliability and its potential to accelerate biosimilar development.
随着多种生物治疗药物专利的到期,生物类似药作为原研产品具有成本效益的替代方案,在全球范围内越来越受到关注。糖基化是一个关键的质量属性,使得糖基相似性评估对于生物类似药的开发至关重要。鉴于糖分析图谱的复杂性,评估糖基相似性并非易事。
本研究提出一种基于Python的自动化工具,用于快速估计糖基相似性指数(GI)。
已对曲妥珠单抗原研产品赫赛汀(罗氏公司)与五种上市生物类似药:曲妥珠单抗(瑞来生物科技)、卡妥索单抗(百康公司)、维妥珠单抗(齐杜斯英吉尼亚公司)、赫卓(迈兰公司)和比塞妥珠单抗(西普拉公司)进行了全面的分析糖基相似性比较。同样,也展示了贝伐单抗原研产品安维汀(罗氏公司)与其五种生物类似药:阿贝伐单抗(迈兰公司)、克拉贝伐单抗(百康公司)、伊维单抗(RPG生命科学公司)、布瑞斯塔(齐杜斯公司)和阿德瓦单抗(阿尔肯实验室)之间的比较。使用液相色谱 - 荧光检测评估聚糖谱,并使用XGBoost机器学习算法整合数据以量化聚糖组成。通过结合图谱相似性和组成相似性来计算GI,根据每种聚糖的关键性和耐受性进行估计。
与Excel(> 10分钟/样本)相比,该工具能够快速估计GI(< 1分钟/样本),且误差更小。生物类似药表现出较高的GI,几种超过95%,而观察到的最低GI分别为曲妥珠单抗的87.80%和贝伐单抗的92.39%。
基于Python的工具为糖基相似性评估提供了一个高通量且可靠的平台,优于传统分析方法。在生物类似药中观察到糖基化模式存在微小差异,表明糖基相似性存在适度变化(GI范围在80%至100%之间)。然而,分析的创新药批次数量有限限制了确定的耐受限度的建立。未来的研究应侧重于分析更大的数据集,以提高准确性并定义精确的耐受限度,增强该工具的可靠性及其加速生物类似药开发的潜力。