Suppr超能文献

通过整合反向疫苗学和免疫信息学方法筛选致癌蛋白并开发针对乳腺癌中AKT1和PARP1的多表位肽疫苗

Screening of Oncogenic Proteins and Development of a Multiepitope Peptide Vaccine Targeting AKT1 and PARP1 for Breast Cancer by Integrating Reverse Vaccinology and Immune-Informatics Approaches.

作者信息

Gupta Sakshi, Desai Drashti, Patel Mansi, Jyotishi Charmi, Saleh Ahmad Mahmoud, Gupta Reeshu

机构信息

Parul Institute of Applied Sciences, Parul University, Vadodara, India.

Centre of Research for Development, Parul University, Vadodara, India.

出版信息

Asian Pac J Cancer Prev. 2025 Jan 1;26(1):327-338. doi: 10.31557/APJCP.2025.26.1.327.

Abstract

BACKGROUND

Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

METHODS

This study employed a reverse vaccinology approach combined with various bioinformatic tools to design a multi-epitope peptide vaccine.

RESULTS

Using reverse vaccinology, AKT1 and PARP1 were identified as potential vaccine candidates, as their expression levels were significantly higher in breast cancer samples compared to healthy controls. The vaccine was designed by integrating immune cell epitopes with a TLR4 agonist as an adjuvant. It demonstrated high antigenicity, no allergenicity, and no toxicity. Validation of its 3D structure using the Ramachandran plot confirmed optimal conformation and stereochemical properties. Molecular docking and simulation studies showed the vaccine was stable and compact when interacting with TLR4. Moreover, the subunit vaccine effectively eliminated the antigen and triggered a strong IgG/IgM immune response lasting approximately one year (350 days).

CONCLUSION

These findings suggest that the designed vaccine holds promise as a therapeutic option for breast cancer. However, further in vitro and in vivo studies are necessary to validate its efficacy before advancing to clinical trials.

摘要

背景

乳腺癌仍然是一项重大的全球健康挑战,需要创新的治疗策略。利用计算工具的计算机模拟方法为疫苗开发提供了一条有前景的途径。这些方法有助于抗原识别、表位预测、免疫反应建模和疫苗优化,加速设计过程。

方法

本研究采用反向疫苗学方法结合各种生物信息学工具设计一种多表位肽疫苗。

结果

通过反向疫苗学,AKT1和PARP1被确定为潜在的疫苗候选物,因为与健康对照相比,它们在乳腺癌样本中的表达水平显著更高。该疫苗通过将免疫细胞表位与作为佐剂的TLR4激动剂整合而设计。它表现出高抗原性、无致敏性且无毒性。使用拉氏图对其三维结构进行验证,证实了其最佳构象和立体化学性质。分子对接和模拟研究表明,该疫苗与TLR4相互作用时稳定且紧密。此外,亚单位疫苗有效清除了抗原,并引发了持续约一年(350天)的强烈IgG/IgM免疫反应。

结论

这些发现表明,所设计的疫苗有望成为乳腺癌的一种治疗选择。然而,在推进到临床试验之前,需要进一步进行体外和体内研究以验证其疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eda/12082409/921ff0094fd5/APJCP-26-327-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验