Suppr超能文献

用于极端寒冷条件下健康监测和人机交互的高导电性、自愈合和粘性离子水凝胶。

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

作者信息

Han Fei, Chen Shumeng, Wang Fei, Liu Mei, Li Jiahui, Liu Hao, Yang Yanshen, Zhang Haoqing, Liu Dong, He Rongyan, Cao Wentao, Qin Xiaochuan, Xu Feng

机构信息

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Apr;12(16):e2412726. doi: 10.1002/advs.202412726. Epub 2025 Jan 28.

Abstract

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented. The hydrogel is designed with a hydrogen-bonded and chemically crosslinked network, achieving excellent conductivity (0.49 ± 0.05 S m), adhesion (36.73 ± 2.28 kPa), and self-healing capacity even at -80 °C. Furthermore, the ICHs maintain functionality for over 45 days, showcasing outstanding anti-freezing properties. This material demonstrates significant potential for non-invasive, continuous health monitoring, adhering conformally to the skin without signal crosstalk, and enabling real-time, high-fidelity signal transmission in human-machine interactions under cryogenic conditions. These ICHs offer transformative potential for the next generation of multimodal sensors, broadening application possibilities in harsh environments, including extreme weather and outer space.

摘要

离子导电水凝胶(ICHs)因其柔韧性、生物相容性和导电性的独特组合,正成为先进人机交互和健康监测系统的关键材料。然而,开发同时具有高离子导电性、自愈合性和强粘附性的ICHs仍然是一个重大挑战,特别是在极端低温条件下。在本研究中,提出了一种由甲基丙烯酰基磺酸甜菜碱、甲基丙烯酸、TEMPO氧化纤维素纳米纤维、海藻酸钠和氯化锂组成的新型ICH。该水凝胶设计有氢键和化学交联网络,即使在-80°C时也能实现优异的导电性(0.49±0.05 S m)、粘附性(36.73±2.28 kPa)和自愈合能力。此外,ICHs在45天以上保持功能,展现出出色的抗冻性能。这种材料在非侵入性、连续健康监测方面具有巨大潜力,能与皮肤紧密贴合且无信号串扰,在低温条件下的人机交互中实现实时、高保真信号传输。这些ICHs为下一代多模态传感器提供了变革性潜力,拓宽了在恶劣环境中的应用可能性,包括极端天气和外层空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf7/12021042/cb47c39493f7/ADVS-12-2412726-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验