Suppr超能文献

使用无标记表面增强拉曼光谱和深度学习算法对病毒合并感染进行多重检测和定量分析。

Multiplex Detection and Quantification of Virus Co-Infections Using Label-free Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms.

作者信息

Yang Yanjun, Cui Jiaheng, Kumar Amit, Luo Dan, Murray Jackelyn, Jones Les, Chen Xianyan, Hülck Sebastian, Tripp Ralph A, Zhao Yiping

机构信息

Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.

School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States.

出版信息

ACS Sens. 2025 Feb 28;10(2):1298-1311. doi: 10.1021/acssensors.4c03209. Epub 2025 Jan 28.

Abstract

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.2 million SERS spectra are collected from 11 viruses, nine two-virus mixtures, and four three-virus mixtures at various concentrations in saliva. A deep learning model, MultiplexCR, is developed to simultaneously predict virus species and concentrations from SERS spectra. It achieves an impressive 98.6% accuracy in classifying virus coinfections and a mean absolute error of 0.028 for concentration regression. In blind tests, the model demonstrates consistent high accuracy and precise concentration predictions. This SERS-MultiplexCR platform completes the entire detection process in just 15 min, offering significant potential for rapid, point-of-care diagnostics in infection detection, as well as applications in food safety and environmental monitoring.

摘要

多种呼吸道病毒可同时或相继感染呼吸道,因此对其进行鉴定对于诊断、治疗和疾病管理至关重要。我们提出了一种将表面增强拉曼散射(SERS)与深度学习相结合的无标记诊断平台,用于快速、定量检测呼吸道病毒合并感染。使用灵敏的二氧化硅包覆银纳米棒阵列基底,在不同浓度的唾液中,从11种病毒、9种双病毒混合物和4种三病毒混合物中收集了超过120万个SERS光谱。开发了一种深度学习模型MultiplexCR,用于从SERS光谱中同时预测病毒种类和浓度。在对病毒合并感染进行分类时,其准确率达到了令人印象深刻的98.6%,浓度回归的平均绝对误差为0.028。在盲测中,该模型表现出一致的高精度和精确的浓度预测。这个SERS-MultiplexCR平台仅需15分钟就能完成整个检测过程,在感染检测的快速即时诊断以及食品安全和环境监测应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0102/11877629/d46f3bdb3d7f/se4c03209_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验