Reutershan Trevor, Nguyen Christine V, Effarah Haytham H, Nelson Eric C, Chesnut Kyle D, Barty Christopher P J
Department of Physics and Astronomy, University of California - Irvine, Irvine, California, USA.
Beckman Laser Institute and Medical Clinic, University of California - Irvine, Irvine, California, USA.
Med Phys. 2025 Apr;52(4):2475-2492. doi: 10.1002/mp.17638. Epub 2025 Jan 28.
K-edge subtraction (KES) imaging is a dual-energy imaging technique that enhances contrast by subtracting images taken with x-rays that are above and below the K-edge energy of a specified contrast agent. The resulting reconstruction spatially identifies where the contrast agent accumulates, even when obscured by complex and heterogeneous distributions of human tissue. This method is most successful when x-ray sources are quasimonoenergetic and tunable, conditions that have traditionally only been met at synchrotrons. Laser-Compton x-ray sources (LCSs) are a compact alternative to synchrotron radiation with a quasimonoenergetic x-ray spectrum. One limitation in the clinical application of KES imaging with LCSs has been the extensive time required to tune the x-ray spectrum to two different energies.
We introduce an imaging technique called scanning K-edge subtraction (SKES) that leverages the angle-correlated laser-Compton x-ray spectrum in the setting of mammography. The feasibility and utility of this technique will be evaluated through a series of simulation studies. The goal of SKES imaging is to enable rapid K-edge subtraction imaging using a laser-Compton x-ray source. The technique does not rely on the time-consuming process of tuning laser-Compton interaction parameters.
Laser-Compton interaction physics are modeled using conditions based on an X-band linear electron accelerator architecture currently under development using a combination of 3D particle tracking software and Mathematica. The resulting angle-correlated laser-Compton x-ray beam is propagated through digitally compressed breast phantoms containing iodine contrast-enhanced inserts and then to a digital flat-panel detector using a Matlab Monte Carlo propagation software. This scanning acquisition technique is compared to the direct energy tuning method (DET), as well as to a clinically available dual-energy contrast-enhanced mammography (CEM) system.
KES imaging in a scanning configuration using an LCS was able to generate a KES image of comparable quality to the direct energy tuning method. SKES was able to detect tumors with iodine contrast concentrations lower than what is clinically available today including lesions that are typically obscured by dense fibroglandular tissue. After normalizing to mean glandular dose, SKES is able to generate a KES image with equal contrast to CEM using only 3% of the dose.
By leveraging the unique quasimonochromatic and angle-correlated x-ray spectrum offered by LCSs, a contrast-enhanced subtraction image can be obtained with significantly more contrast and less dose compared to conventional systems, and improve tumor detection in patients with dense breast tissue. The scanning configuration of this technique could accelerate the clinical translation of this technology.
K 边减影(KES)成像是一种双能成像技术,通过减去用高于和低于特定造影剂 K 边能量的 X 射线拍摄的图像来增强对比度。即使造影剂被人体组织的复杂异质分布所掩盖,最终重建的图像也能在空间上识别出造影剂的积聚位置。当 X 射线源为准单色且可调时,这种方法最为成功,而传统上只有在同步加速器中才能满足这些条件。激光康普顿 X 射线源(LCS)是一种紧凑的同步辐射替代方案,具有准单色 X 射线光谱。使用 LCS 进行 KES 成像的临床应用中的一个限制是将 X 射线光谱调整到两种不同能量所需的时间过长。
我们介绍一种称为扫描 K 边减影(SKES)的成像技术,该技术在乳腺摄影中利用与角度相关的激光康普顿 X 射线光谱。将通过一系列模拟研究来评估该技术的可行性和实用性。SKES 成像的目标是使用激光康普顿 X 射线源实现快速 K 边减影成像。该技术不依赖于调整激光康普顿相互作用参数的耗时过程。
使用基于目前正在开发的 X 波段线性电子加速器架构的条件,结合 3D 粒子跟踪软件和 Mathematica 对激光康普顿相互作用物理进行建模。由此产生的与角度相关的激光康普顿 X 射线束通过包含碘对比增强插入物的数字压缩乳腺模型传播,然后使用 Matlab 蒙特卡罗传播软件传播到数字平板探测器。将这种扫描采集技术与直接能量调谐方法(DET)以及临床可用的双能对比增强乳腺摄影(CEM)系统进行比较。
使用 LCS 的扫描配置中的 KES 成像能够生成与直接能量调谐方法质量相当的 KES 图像。SKES 能够检测出碘对比剂浓度低于目前临床可用浓度的肿瘤,包括通常被致密纤维腺组织掩盖的病变。在归一化到平均腺体剂量后,SKES 仅使用 3%的剂量就能生成与 CEM 对比度相同的 KES 图像。
通过利用 LCS 提供的独特准单色和与角度相关的 X 射线光谱,与传统系统相比,可以获得对比度明显更高且剂量更低的对比增强减影图像,并改善致密乳腺组织患者的肿瘤检测。该技术的扫描配置可以加速这项技术的临床转化。