Shih Yu-Tzu, Alipio Jason Bondoc, Klaft Zin-Juan, Green Nathaniel, Wong Lai Ping, Sadreyev Ruslan, Hyun Jung Ho, Dulla Chris, Sahay Amar
Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.
Res Sq. 2025 Jan 16:rs.3.rs-5624085. doi: 10.21203/rs.3.rs-5624085/v1.
The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions. PV IN impairments in early life, when neural circuitry is highly sensitive to experience-dependent refinement, are thought to result in imbalanced excitation and inhibition, impaired cognition, network hyperexcitability and seizures: hallmarks of neurodevelopmental disorders (NDDs) such as Autism Spectrum Disorder and epilepsy. Discovery of transcriptional regulators of experience-dependent PV IN plasticity in the adult hippocampus may permit reversal of these developmental impairments. Here, in a screen designed to capture the PV IN intrinsic program induced by increased mossy fiber inputs, a trigger for experience-dependent PV IN plasticity, we identify the homeobox gene as a regulator of experience-dependent PV IN plasticity gene (XPG) in the adult DG-CA3/CA2 circuit. We found that a significant number of upregulated XPGs also exhibit haploinsufficiency in ASDs, epilepsies, and schizophrenia. We demonstrate that virally-mediated rescue of experience-dependent upregulation in CA3/CA2 PV INs in a NDD risk mouse model in adulthood is sufficient to restore experience-dependent PV IN plasticity, spatial and social memory, ensemble specificity, suppression of network hyperexcitability and seizures. Together, these findings suggest that experience-dependent PV IN plasticity is a convergent mechanism for NDD risk genes that can be re-instated in adulthood to reverse developmental deficits in circuitry, network excitability and cognition.
海马体通过在兴奋性主细胞或神经元集群的共同激活群体中记录经过处理的感官信息来形成我们对经历的记忆。齿状回(DG)-CA3/CA2回路中表达小白蛋白的快速放电抑制性神经元(PV INs)通过苔藓纤维依赖性前馈抑制对兴奋性主细胞活动进行精确的时间控制,从而有助于记忆编码。PV INs通过协调其内在兴奋性、输入-输出突触连接性、突触生理学和突触可塑性的变化(此处称为经验依赖性PV IN可塑性)来响应输入特异性信息,以影响海马体功能。在生命早期,当神经回路对经验依赖性精细化高度敏感时,PV INs的损伤被认为会导致兴奋与抑制失衡、认知受损、网络过度兴奋和癫痫发作,这些都是自闭症谱系障碍和癫痫等神经发育障碍(NDDs)的特征。在成年海马体中发现经验依赖性PV IN可塑性的转录调节因子可能会逆转这些发育损伤。在这里,在一个旨在捕获由增加的苔藓纤维输入诱导的PV IN内在程序的筛选中,增加的苔藓纤维输入是经验依赖性PV IN可塑性的一个触发因素,我们确定同源盒基因是成年DG-CA3/CA2回路中经验依赖性PV IN可塑性基因(XPG)的一个调节因子。我们发现,大量上调的XPGs在自闭症谱系障碍、癫痫和精神分裂症中也表现出单倍剂量不足。我们证明,在成年期的NDD风险小鼠模型中,通过病毒介导的CA3/CA2 PV INs中经验依赖性上调的挽救足以恢复经验依赖性PV IN可塑性、空间和社会记忆、集合特异性、网络过度兴奋和癫痫发作的抑制。总之,这些发现表明,经验依赖性PV IN可塑性是NDD风险基因的一种趋同机制,在成年期可以恢复,以逆转电路、网络兴奋性和认知方面的发育缺陷。