Suppr超能文献

加权单步基因组最佳线性无偏预测器提高了通过荷斯坦奶牛泌乳早期乳中红外光谱预测乳柠檬酸的基因组预测准确性。

Weighted single-step genomic best linear unbiased predictor enhances the genomic prediction accuracy for milk citrate predicted by milk mid-infrared spectra of Holstein cows in early lactation.

作者信息

Chen Y, Atashi H, Grelet C, Gengler N

机构信息

TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.

Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran.

出版信息

JDS Commun. 2024 Sep 27;6(1):90-94. doi: 10.3168/jdsc.2024-0607. eCollection 2025 Jan.

Abstract

Previous studies have shown that milk citrate predicted by milk mid-infrared (MIR) spectra is strongly affected by a few genomic regions. This study aimed to explore the effect of weighted single-step GBLUP on the accuracy of genomic prediction (GP) for MIR-predicted milk citrate in early-lactation Holstein cows. A total of 134,517 test-day predicted milk citrate collected within the first 50 DIM on 52,198 Holstein cows from the first 5 parities were used. There were 122,218 animals in the pedigree, of which 4,479 had genotypic data for 566,170 SNPs. Two datasets (partial and whole datasets) were used to verify whether the accuracy of GP is improved using the following different methods. The (genomic) estimated breeding values (EBV or GEBV) in the partial and whole datasets were estimated by pedigree-based BLUP (ABLUP), single-step GBLUP (ssGBLUP, pedigree-genomic combined using no weight for SNP), and weighted ssGBLUP (WssGBLUP, pedigree-genomic combined using weighted SNP), respectively. The difference between the 2 datasets is that the phenotypic data from 2017 to 2019 in the partial dataset were set as missing values. One hundred eighty-one youngest cows with genomic data were selected as the validation population. A linear regression method was used to compare EBV (GEBV) predicted for partial and whole datasets. The accuracies of GP for ABLUP and ssGBLUP were 0.42 and 0.70, respectively. The accuracies of GP for WssGBLUP in the 5 iterations with different CT (constant) values (determines departure from normality for SNP effects) ranged from 0.70 to 0.86. This study showed that weighted SNP is beneficial in improving prediction accuracy for predicted milk citrate.

摘要

先前的研究表明,通过牛奶中红外(MIR)光谱预测的牛奶柠檬酸盐受到少数基因组区域的强烈影响。本研究旨在探讨加权单步GBLUP对早期泌乳荷斯坦奶牛MIR预测牛奶柠檬酸盐的基因组预测(GP)准确性的影响。使用了来自前5胎次的52,198头荷斯坦奶牛在泌乳期前50天内收集的总共134,517个测定日预测牛奶柠檬酸盐数据。系谱中有122,218头动物,其中4,479头具有566,170个单核苷酸多态性(SNP)的基因型数据。使用两个数据集(部分数据集和完整数据集)来验证采用以下不同方法是否能提高GP的准确性。部分数据集和完整数据集中的(基因组)估计育种值(EBV或GEBV)分别通过基于系谱的BLUP(ABLUP)、单步GBLUP(ssGBLUP,系谱-基因组结合,SNP无权重)和加权ssGBLUP(WssGBLUP,系谱-基因组结合,SNP加权)进行估计。两个数据集的区别在于,部分数据集中2017年至2019年的表型数据被设置为缺失值。选择了181头最年轻的具有基因组数据的奶牛作为验证群体。采用线性回归方法比较部分数据集和完整数据集预测的EBV(GEBV)。ABLUP和ssGBLUP的GP准确性分别为0.42和(0.70)。在具有不同CT(常数)值(决定SNP效应偏离正态性)的5次迭代中,WssGBLUP的GP准确性范围为0.70至0.86。本研究表明,加权SNP有助于提高预测牛奶柠檬酸盐的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a0/11770305/22f5befd1c9e/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验