Suppr超能文献

前列腺癌的聚焦治疗:利用人工智能确定肿瘤体积并预测治疗结果。

Focal therapy of prostate cancer: Use of artificial intelligence to define tumour volume and predict treatment outcomes.

作者信息

Brisbane Wayne G, Priester Alan M, Nguyen Anissa V, Topoozian Mark, Mota Sakina, Delfin Merdie K, Gonzalez Samantha, Grunden Kyla P, Richardson Shannon, Natarajan Shyam, Marks Leonard S

机构信息

Department of Urology, Institute of Urologic Oncology UCLA Los Angeles California USA.

Avenda Health Culver City California USA.

出版信息

BJUI Compass. 2024 Nov 28;6(1):e456. doi: 10.1002/bco2.456. eCollection 2025 Jan.

Abstract

OBJECTIVES

The aim of this study is to evaluate new software (Unfold AI) in the estimation of prostate tumour volume (TV) and prediction of focal therapy outcomes.

SUBJECTS/PATIENTS AND METHODS: Subjects were 204 men with prostate cancer (PCa) of grade groups 2-4 (GG ≥ 2), who were enrolled in a trial of partial gland cryoablation (PGA) at UCLA from 2017 to 2022. Magnetic resonance imaging (MRI)-guided biopsy (MRGB) was performed at diagnosis and at 6 and 18 months following PGA. Utilising Unfold AI (FDA-cleared 2022), which generates a 3D map of GG ≥ 2 PCa margins, we retrospectively estimated TV for each patient. TV was compared against conventional baseline variables as a correlate of a successful primary outcome-defined here as the absence of GG ≥ 2 on follow-up MRGB at 6 months. Secondary outcomes were MRGB at 18 months and failure-free survival, that is, lack of metastasis or salvage whole gland therapy. Receiver operating curves and multivariate analysis were used to determine significance.

RESULTS

A successful primary outcome was observed in 77.7% of patients. Significant correlates of a successful ablation were percent pattern 4 and TV; areas under the curve (AUCs) were 0.60 and 0.73, respectively. GG was not a correlate of success (AUC = 0.51). A TV of 1.5 cc provided the optimal combination of sensitivity (55.8%) and specificity (85.7%) at 6 months. TV was also significantly associated with secondary outcomes. In multivariate analysis, TV was the variable most associated with 6- and 18-month biopsy success (adjusted odds ratios [aORs] were 6.1 and 4.2). Utilising TV ≤ 1.5 cc as a PGA criterion would have prevented 72% of failures at the cost of 42% of successes.

CONCLUSION

The AI-based software Unfold AI estimates TV, which is significantly associated with biopsy outcomes after focal cryoablation. The rate of treatment success is inversely related to TV.

摘要

目的

本研究旨在评估一款新软件(Unfold AI)在估计前列腺肿瘤体积(TV)及预测局部治疗结果方面的性能。

受试者/患者及方法:研究对象为204名2 - 4级组(GG≥2)的前列腺癌(PCa)男性患者,他们于2017年至2022年在加州大学洛杉矶分校(UCLA)参加了一项部分腺体冷冻消融(PGA)试验。在诊断时以及PGA术后6个月和18个月进行磁共振成像(MRI)引导下活检(MRGB)。利用Unfold AI(2022年获得美国食品药品监督管理局(FDA)批准)生成GG≥2的PCa边缘的三维地图,我们对每位患者的TV进行了回顾性估计。将TV与传统基线变量进行比较,作为成功的主要结局的一个关联因素,此处成功的主要结局定义为在6个月时的随访MRGB中不存在GG≥2。次要结局为18个月时的MRGB及无失败生存期,即无转移或挽救性全腺体治疗。采用受试者工作特征曲线和多变量分析来确定其显著性。

结果

77.7%的患者观察到成功的主要结局。消融成功的显著关联因素为4级模式百分比和TV;曲线下面积(AUC)分别为0.60和0.73。GG不是成功的关联因素(AUC = 0.51)。TV为1.5 cc时在6个月时提供了最佳的敏感性(55.8%)和特异性(85.7%)组合。TV也与次要结局显著相关。在多变量分析中,TV是与6个月和18个月活检成功最相关的变量(调整后的优势比[aORs]分别为6.1和4.2)。将TV≤1.5 cc用作PGA标准将以42%的成功为代价预防72%的失败。

结论

基于人工智能的软件Unfold AI可估计TV,TV与局部冷冻消融后的活检结果显著相关。治疗成功率与TV呈负相关。

相似文献

本文引用的文献

4
Prediction and Mapping of Intraprostatic Tumor Extent with Artificial Intelligence.利用人工智能预测和绘制前列腺内肿瘤范围
Eur Urol Open Sci. 2023 Jun 13;54:20-27. doi: 10.1016/j.euros.2023.05.018. eCollection 2023 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验