Priester Alan, Mota Sakina Mohammed, Grunden Kyla P, Shubert Joshua, Richardson Shannon, Sisk Anthony, Felker Ely R, Sayre James, Marks Leonard S, Natarajan Shyam, Brisbane Wayne G
Avenda Health, Inc. United States.
Department of Urology David Geffen School of Medicine United States.
BJUI Compass. 2024 Aug 26;5(10):986-997. doi: 10.1002/bco2.421. eCollection 2024 Oct.
The objective of this study is to compare detection rates of extracapsular extension (ECE) of prostate cancer (PCa) using artificial intelligence (AI)-generated cancer maps versus MRI and conventional nomograms.
We retrospectively analysed data from 147 patients who received MRI-targeted biopsy and subsequent radical prostatectomy between September 2016 and May 2022. AI-based software cleared by the United States Food and Drug Administration (Unfold AI, Avenda Health) was used to map 3D cancer probability and estimate ECE risk. Conventional ECE predictors including MRI Likert scores, capsular contact length of MRI-visible lesions, PSMA T stage, Partin tables, and the "PRedicting ExtraCapsular Extension" nomogram were used for comparison.Postsurgical specimens were processed using whole-mount histopathology sectioning, and a genitourinary pathologist assessed each quadrant for ECE presence. ECE predictors were then evaluated on the patient (Unfold AI versus all comparators) and quadrant level (Unfold AI versus MRI Likert score). Receiver operator characteristic curves were generated and compared using DeLong's test.
Unfold AI had a significantly higher area under the curve (AUC = 0.81) than other predictors for patient-level ECE prediction. Unfold AI achieved 68% sensitivity, 78% specificity, 71% positive predictive value, and 75% negative predictive value. At the quadrant level, Unfold AI exceeded the AUC of MRI Likert scores for posterior (0.89 versus 0.82, = 0.003), anterior (0.84 versus 0.80, = 0.34), and all quadrants (0.89 versus 0.82, = 0.002). The false negative rate of Unfold AI was lower than MRI in both the anterior (-60%) and posterior prostate (-40%).
Unfold AI accurately predicted ECE risk, outperforming conventional methodologies. It notably improved ECE prediction over MRI in posterior quadrants, with the potential to inform nerve-spare technique and prevent positive margins. By enhancing PCa staging and risk stratification, AI-based cancer mapping may lead to better oncological and functional outcomes for patients.
本研究的目的是比较使用人工智能(AI)生成的癌症图谱与MRI及传统列线图对前列腺癌(PCa)包膜外扩展(ECE)的检测率。
我们回顾性分析了2016年9月至2022年5月期间147例接受MRI靶向活检及后续根治性前列腺切除术患者的数据。使用经美国食品药品监督管理局批准的基于AI的软件(Unfold AI,Avenda Health)绘制三维癌症概率图并估计ECE风险。将包括MRI李克特评分、MRI可见病灶的包膜接触长度、PSMA T分期、Partin表以及“预测包膜外扩展”列线图等传统ECE预测指标用于比较。术后标本采用全层组织病理学切片处理,由泌尿生殖病理学家评估每个象限是否存在ECE。然后在患者层面(Unfold AI与所有比较指标)和象限层面(Unfold AI与MRI李克特评分)评估ECE预测指标。生成受试者操作特征曲线并使用德龙检验进行比较。
在患者层面ECE预测方面,Unfold AI的曲线下面积(AUC = 0.81)显著高于其他预测指标。Unfold AI的灵敏度为68%,特异度为78%,阳性预测值为71%,阴性预测值为75%。在象限层面,Unfold AI在后侧(0.89对0.82,P = 0.003)、前侧(0.84对0.80,P = 0.34)以及所有象限(0.89对0.82,P = 0.002)的AUC均超过MRI李克特评分。Unfold AI在前侧前列腺(-60%)和后侧前列腺(-40%)的假阴性率均低于MRI。
Unfold AI准确预测了ECE风险,优于传统方法。它在后侧象限显著改善了ECE预测,有可能为保留神经技术提供参考并防止切缘阳性。通过加强PCa分期和风险分层,基于AI的癌症图谱绘制可能为患者带来更好的肿瘤学和功能结局。