Liu Zheng-Hao, Meng Yu, Wu Yu-Ze, Hao Ze-Yan, Xu Zhen-Peng, Ai Cheng-Jun, Wei Hai, Wen Kai, Chen Jing-Ling, Ma Jie, Xu Jin-Shi, Li Chuan-Feng, Guo Guang-Can
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Sci Adv. 2025 Jan 31;11(5):eabd8080. doi: 10.1126/sciadv.abd8080. Epub 2025 Jan 29.
Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a context-cover number of 3 and show that this number saturates the lower bound posed by quantum theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.
上下文相关性是量子理论的一个标志性特征,它体现了量子理论与任何非上下文隐变量模型的不相容性。格林伯格 - 霍恩 - 泽林格(GHZ)型悖论是上下文相关性的证明,它通过确定性逻辑论证揭示了这种不相容性。然而,事件能被包含在最少上下文且具有最强非经典性的GHZ型悖论仍然难以捉摸。在此,我们推导出一个上下文覆盖数为3的GHZ型悖论,并表明这个数字达到了量子理论所提出的下限。我们用一个时域光纤光学平台演示了这个悖论,并在一个基于对时分复用脉冲相干光进行高速调制、卷积和零差检测的37维设置中恢复了量子预测。通过在高维希尔伯特空间中提出并研究一种强形式的上下文相关性,我们的结果为利用时分复用光学系统探索奇异量子关联铺平了道路。