用于癌症生物电调制的钛酸钡@聚3,4-乙撑二氧噻吩纳米颗粒的无线刺激
Wireless Stimulation of Barium Titanate@PEDOT Nanoparticles Toward Bioelectrical Modulation in Cancer.
作者信息
Jones Catarina Franco, Carvalho Marta S, Jain Akhil, Rodriguez-Lejarraga Paula, Pires Filipa, Morgado Jorge, Lanceros-Mendez Senentxu, Ferreira Frederico Castelo, Esteves Teresa, Sanjuan-Alberte Paola
机构信息
Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
出版信息
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):8836-8848. doi: 10.1021/acsami.4c12387. Epub 2025 Jan 29.
Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231. Upon US stimulation, the viability of MCF-7 and MDA-MB-231 cells treated with 200 μg mL BTO@PEDOT NPs and US reduced significantly to 31% and 24%, respectively, while healthy human mammary fibroblasts (HMF) were unaffected by the treatment. Subsequent assays shed light on how this approach could interact with cell's bioelectrical mechanisms, namely, by increasing intracellular reactive oxygen species (ROS) and calcium concentrations. Furthermore, this system was able to polarize cancer cell membranes, halting their cell cycle and potentially harnessing their tumorigenic characteristics. These findings underscore the crucial role of bioelectricity in cancer progression and highlight the potential of nanobioelectronic systems as an emerging and promising strategy for cancer intervention.
癌细胞具有独特的生物电特性,但利用这些特性的疗法仍未得到充分探索。在此,我们介绍一种创新的纳米生物电子系统,该系统结合了压电钛酸钡纳米颗粒核心与导电聚(3,4 - 乙撑二氧噻吩)外壳(BTO@PEDOT NPs),旨在通过无创、无线刺激来调节癌细胞的生物电。我们的假设是,作为纳米天线,BTO@PEDOT NPs将超声(US)提供的机械输入转换为电信号,能够干扰两种人类乳腺癌细胞系MCF - 7和MDA - MB - 231的生物电子电路。在超声刺激下,用200 μg/mL BTO@PEDOT NPs和超声处理的MCF - 7和MDA - MB - 231细胞的活力分别显著降低至31%和24%,而健康的人乳腺成纤维细胞(HMF)不受该处理的影响。随后的实验揭示了这种方法如何与细胞的生物电机制相互作用,即通过增加细胞内活性氧(ROS)和钙浓度。此外,该系统能够使癌细胞膜极化,阻止其细胞周期并潜在地利用其致瘤特性。这些发现强调了生物电在癌症进展中的关键作用,并突出了纳米生物电子系统作为一种新兴且有前景的癌症干预策略的潜力。
相似文献
ACS Appl Mater Interfaces. 2025-2-12
Int J Nanomedicine. 2013-6-28
ACS Appl Mater Interfaces. 2020-10-28
ACS Nano. 2015-7-28
ACS Appl Mater Interfaces. 2020-11-4
本文引用的文献
Nat Nanotechnol. 2024-1
Pharmaceutics. 2023-4-26
Adv Drug Deliv Rev. 2023-4
Cell Biosci. 2022-9-3