Suppr超能文献

超声激活的压电纳米材料在疾病治疗中的应用

Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment.

作者信息

Yang Shiyuan, Wang Yuan, Liang Xiaolong

机构信息

Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.

出版信息

Pharmaceutics. 2023 Apr 26;15(5):1338. doi: 10.3390/pharmaceutics15051338.

Abstract

Electric stimulation has been used in changing the morphology, status, membrane permeability, and life cycle of cells to treat certain diseases such as trauma, degenerative disease, tumor, and infection. To minimize the side effects of invasive electric stimulation, recent studies attempt to apply ultrasound to control the piezoelectric effect of nano piezoelectric material. This method not only generates an electric field but also utilizes the benefits of ultrasound such as non-invasive and mechanical effects. In this review, important elements in the system, piezoelectricity nanomaterial and ultrasound, are first analyzed. Then, we summarize recent studies categorized into five kinds, nervous system diseases treatment, musculoskeletal tissues treatment, cancer treatment, anti-bacteria therapy, and others, to prove two main mechanics under activated piezoelectricity: one is biological change on a cellular level, the other is a piezo-chemical reaction. However, there are still technical problems to be solved and regulation processes to be completed before widespread use. The core problems include how to accurately measure piezoelectricity properties, how to concisely control electricity release through complex energy transfer processes, and a deeper understanding of related bioeffects. If these problems are conquered in the future, piezoelectric nanomaterials activated by ultrasound will provide a new pathway and realize application in disease treatment.

摘要

电刺激已被用于改变细胞的形态、状态、膜通透性和生命周期,以治疗某些疾病,如创伤、退行性疾病、肿瘤和感染。为了将侵入性电刺激的副作用降至最低,最近的研究试图应用超声来控制纳米压电材料的压电效应。这种方法不仅能产生电场,还能利用超声的非侵入性和机械效应等优点。在这篇综述中,首先分析了系统中的重要元素,即压电纳米材料和超声。然后,我们总结了最近的研究,这些研究分为五类,即神经系统疾病治疗、肌肉骨骼组织治疗、癌症治疗、抗菌治疗和其他治疗,以证明激活压电效应的两个主要机制:一是细胞水平的生物学变化,另一个是压电化学反应。然而,在广泛应用之前,仍有技术问题需要解决和监管程序需要完善。核心问题包括如何准确测量压电性能,如何通过复杂的能量转移过程精确控制电释放,以及对相关生物效应的更深入理解。如果未来攻克了这些问题,超声激活的压电纳米材料将提供一条新途径,并实现其在疾病治疗中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77be/10223188/66666031c4fb/pharmaceutics-15-01338-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验