Suppr超能文献

一种用于活细胞长期超分辨率成像且具有可靠置信度量化的神经网络。

A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification.

作者信息

Qiao Chang, Liu Shuran, Wang Yuwang, Xu Wencong, Geng Xiaohan, Jiang Tao, Zhang Jingyu, Meng Quan, Qiao Hui, Li Dong, Dai Qionghai

机构信息

Department of Automation, Tsinghua University, Beijing, China.

Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.

出版信息

Nat Biotechnol. 2025 Jan 29. doi: 10.1038/s41587-025-02553-8.

Abstract

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network. DPA-TISR adaptively enhances the cross-frame alignment in the phase domain and outperforms existing state-of-the-art SISR and TISR models. We also develop Bayesian DPA-TISR and design an expected calibration error minimization framework that reliably infers inference confidence. We demonstrate multicolor live-cell SR imaging for more than 10,000 time points of various biological specimens with high fidelity, temporal consistency and accurate confidence quantification.

摘要

超分辨率(SR)神经网络将低分辨率光学显微镜图像转换为超分辨率图像。将单图像超分辨率(SISR)方法应用于长期成像尚未利用相邻帧之间的时间依赖性,并且存在难以量化的推理不确定性。在这里,通过构建大规模荧光显微镜数据集并评估神经网络模型的传播和对齐组件,我们设计了一种可变形相空间对齐(DPA)延时图像超分辨率(TISR)神经网络。DPA-TISR在相域中自适应增强跨帧对齐,并且优于现有的最先进的SISR和TISR模型。我们还开发了贝叶斯DPA-TISR并设计了一个预期校准误差最小化框架,该框架能够可靠地推断推理置信度。我们展示了对各种生物样本超过10000个时间点的多色活细胞超分辨率成像,具有高保真度、时间一致性和准确的置信度量化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验