Suppr超能文献

基于磁共振成像的深度学习影像组学用于鉴别双表型肝细胞癌与肝细胞癌及肝内胆管癌:一项多中心研究

MRI-based deep learning radiomics to differentiate dual-phenotype hepatocellular carcinoma from HCC and intrahepatic cholangiocarcinoma: a multicenter study.

作者信息

Wu Qian, Zhang Tao, Xu Fan, Cao Lixiu, Gu Wenhao, Zhu Wenjing, Fan Yanfen, Wang Ximing, Hu Chunhong, Yu Yixing

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China.

出版信息

Insights Imaging. 2025 Jan 29;16(1):27. doi: 10.1186/s13244-025-01904-y.

Abstract

OBJECTIVES

To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).

METHODS

Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).

RESULTS

The radiomics model demonstrated competent diagnostic performance, with a macro-AUC exceeding 0.9, and both accuracy and F1-score above 0.75 in the internal and external validation sets. Notably, the vgg19-combined model outperformed the radiomics and other DTL models. The fusion model based on vgg19 further improved diagnostic performance, achieving a macro-AUC of 0.990 (95% CI: 0.965-1.000), an accuracy of 0.935, and an F1-score of 0.937 in the internal test set. In the external test set, it similarly performed well, with a macro-AUC of 0.988 (95% CI: 0.964-1.000), accuracy of 0.875, and an F1-score of 0.885.

CONCLUSIONS

Both the radiomics and the DTL models were able to differentiate DPHCC from HCC and ICC before surgery. The fusion models showed better diagnostic accuracy, which has important value in clinical application.

CRITICAL RELEVANCE STATEMENT

MRI-based deep learning radiomics were able to differentiate DPHCC from HCC and ICC preoperatively, aiding clinicians in the identification and targeted treatment of these malignant hepatic tumors.

KEY POINTS

Fusion models may yield an incremental value over radiomics models in differential diagnosis. Radiomics and deep learning effectively differentiate the three types of malignant hepatic tumors. The fusion models may enhance clinical decision-making for malignant hepatic tumors.

摘要

目的

基于对比增强磁共振成像(CE-MRI)开发并验证用于鉴别双表型肝细胞癌(DPHCC)与肝细胞癌(HCC)及肝内胆管癌(ICC)的放射组学和深度学习模型。

方法

我们的研究纳入了来自四个中心的381例患者,其中有138例HCC、122例DPHCC和121例ICC(244例用于训练,62例用于内部测试,来自中心1和2;75例用于外部测试,来自中心3和4)。分别基于CE-MRI建立放射组学、深度迁移学习(DTL)和融合模型用于鉴别诊断,并使用混淆矩阵和受试者操作特征(ROC)曲线下面积(AUC)比较它们的诊断性能。

结果

放射组学模型显示出良好的诊断性能,在内部和外部验证集中,宏观AUC超过0.9,准确率和F1分数均高于0.75。值得注意的是,vgg19组合模型优于放射组学模型和其他DTL模型。基于vgg19的融合模型进一步提高了诊断性能,在内部测试集中宏观AUC为0.990(95%CI:0.965-1.000),准确率为0.935,F1分数为0.937。在外部测试集中,其表现同样良好,宏观AUC为0.988(95%CI:0.964-1.000),准确率为0.875,F1分数为0.885。

结论

放射组学和DTL模型均能够在术前鉴别DPHCC与HCC及ICC。融合模型显示出更好的诊断准确性,在临床应用中具有重要价值。

关键相关性声明

基于MRI的深度学习放射组学能够在术前鉴别DPHCC与HCC及ICC,有助于临床医生识别和靶向治疗这些恶性肝肿瘤。

要点

融合模型在鉴别诊断中可能比放射组学模型产生更大的价值。放射组学和深度学习有效地鉴别了三种类型的恶性肝肿瘤。融合模型可能增强对恶性肝肿瘤的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11780023/43853dfd2658/13244_2025_1904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验