Kappel David, Cheng Sen
Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany.
Front Comput Neurosci. 2025 Jan 15;18:1462110. doi: 10.3389/fncom.2024.1462110. eCollection 2024.
The hippocampal formation exhibits complex and context-dependent activity patterns and dynamics, e.g., place cell activity during spatial navigation in rodents or remapping of place fields when the animal switches between contexts. Furthermore, rodents show context-dependent renewal of extinguished behavior. However, the link between context-dependent neural codes and context-dependent renewal is not fully understood.
We use a deep neural network-based reinforcement learning agent to study the learning dynamics that occur during spatial learning and context switching in a simulated ABA extinction and renewal paradigm in a 3D virtual environment.
Despite its simplicity, the network exhibits a number of features typically found in the CA1 and CA3 regions of the hippocampus. A significant proportion of neurons in deeper layers of the network are tuned to a specific spatial position of the agent in the environment-similar to place cells in the hippocampus. These complex spatial representations and dynamics occur spontaneously in the hidden layer of a deep network during learning. These spatial representations exhibit global remapping when the agent is exposed to a new context. The spatial maps are restored when the agent returns to the previous context, accompanied by renewal of the conditioned behavior. Remapping is facilitated by memory replay of experiences during training.
Our results show that integrated codes that jointly represent spatial and task-relevant contextual variables are the mechanism underlying renewal in a simulated DQN agent.
海马结构呈现出复杂且依赖于情境的活动模式和动态变化,例如,啮齿动物在空间导航过程中的位置细胞活动,或者当动物在不同情境之间切换时位置场的重新映射。此外,啮齿动物表现出依赖于情境的消退行为的恢复。然而,依赖于情境的神经编码与依赖于情境的恢复之间的联系尚未完全明了。
我们使用基于深度神经网络的强化学习智能体,来研究在三维虚拟环境中的模拟ABA消退和恢复范式下空间学习和情境切换过程中发生的学习动态。
尽管网络结构简单,但它展现出许多通常在海马体CA1和CA3区域中发现的特征。网络较深层中的很大一部分神经元被调整至智能体在环境中的特定空间位置,这类似于海马体中的位置细胞。这些复杂的空间表征和动态变化在学习过程中自发地出现在深度网络的隐藏层中。当智能体暴露于新情境时,这些空间表征会发生全局重新映射。当智能体返回先前情境时,空间图谱会恢复,同时伴随条件行为的恢复。训练期间的经验记忆重放促进了重新映射。
我们的结果表明,联合表征空间和与任务相关的情境变量的整合编码是模拟深度Q网络智能体中恢复现象的潜在机制。