Kashani Syed Danish Rafiq, Jan Faisal Zahoor, Bhat Imtiyaz Ahmad, Najar Nadeem Ahmad, Rashid Irfan
Department of Geoinformatics, University of Kashmir, Hazratbal Srinagar 190006, Jammu and Kashmir, India.
Data Brief. 2024 Dec 25;58:111262. doi: 10.1016/j.dib.2024.111262. eCollection 2025 Feb.
Accurate estimates of forest dynamics and above-ground forest biomass for the topographically challenging Himalaya are crucial for understanding carbon storage potential, assessing ecosystem services, and guiding conservation efforts in response to climate change. This dataset provides a manually delineated multi-temporal forest inventory and a comprehensive record of above-ground biomass (AGB) across the Kashmir Himalaya, generated from field observations, advanced remote sensing and machine learning. Data were collected and generated through remote sensing techniques and extensive in-situ measurements of 6220 trees (n=275 plots), including tree diameter at breast height, species composition, and tree density to map forest area and model AGB across varied terrain. The dataset captures major forest types and species-specific AGB variation influenced by elevation, slope, and aspect. Additionally, newly developed species-specific allometric models, improved through the integration of normalized difference vegetation index (NDVI) and topographical augmentation are provided to improve AGB estimation accuracy. This dataset serves as a crucial resource for forest management, carbon monitoring, and ecological modeling, with broad applications in regional conservation strategies, biodiversity planning, and climate policy development in mountainous ecosystems.
对于地形复杂的喜马拉雅地区而言,准确估算森林动态和地上森林生物量对于理解碳储存潜力、评估生态系统服务以及指导应对气候变化的保护工作至关重要。该数据集提供了一份人工绘制的多时期森林清单,以及克什米尔喜马拉雅地区地上生物量(AGB)的全面记录,这些数据来自实地观测、先进的遥感技术和机器学习。通过遥感技术和对6220棵树木(n = 275个样地)进行广泛的实地测量收集并生成了数据,测量内容包括胸径、物种组成和树木密度,以绘制森林面积并对不同地形的地上生物量进行建模。该数据集涵盖了主要森林类型以及受海拔、坡度和坡向影响的特定物种地上生物量变化。此外,还提供了通过整合归一化植被指数(NDVI)和地形增强而改进的新开发的特定物种异速生长模型,以提高地上生物量估计的准确性。该数据集是森林管理、碳监测和生态建模的重要资源,在山区生态系统的区域保护战略、生物多样性规划和气候政策制定中具有广泛应用。