Urbazaev Mikhail, Thiel Christian, Cremer Felix, Dubayah Ralph, Migliavacca Mirco, Reichstein Markus, Schmullius Christiane
Department of Earth Observation, Institute of Geography, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
International Max Planck Research School (IMPRS), Max Planck Institute for Biogeochemistry, 07745, Jena, Germany.
Carbon Balance Manag. 2018 Feb 21;13(1):5. doi: 10.1186/s13021-018-0093-5.
Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed for understanding and managing processes involved in the carbon cycle and supporting international policies for climate change mitigation and adaption. Furthermore, these products provide important baseline data for the development of sustainable management strategies to local stakeholders. The use of remote sensing data can provide spatially explicit information of AGB from local to global scales. In this study, we mapped national Mexican forest AGB using satellite remote sensing data and a machine learning approach. We modelled AGB using two scenarios: (1) extensive national forest inventory (NFI), and (2) airborne Light Detection and Ranging (LiDAR) as reference data. Finally, we propagated uncertainties from field measurements to LiDAR-derived AGB and to the national wall-to-wall forest AGB map.
The estimated AGB maps (NFI- and LiDAR-calibrated) showed similar goodness-of-fit statistics (R, Root Mean Square Error (RMSE)) at three different scales compared to the independent validation data set. We observed different spatial patterns of AGB in tropical dense forests, where no or limited number of NFI data were available, with higher AGB values in the LiDAR-calibrated map. We estimated much higher uncertainties in the AGB maps based on two-stage up-scaling method (i.e., from field measurements to LiDAR and from LiDAR-based estimates to satellite imagery) compared to the traditional field to satellite up-scaling. By removing LiDAR-based AGB pixels with high uncertainties, it was possible to estimate national forest AGB with similar uncertainties as calibrated with NFI data only.
Since LiDAR data can be acquired much faster and for much larger areas compared to field inventory data, LiDAR is attractive for repetitive large scale AGB mapping. In this study, we showed that two-stage up-scaling methods for AGB estimation over large areas need to be analyzed and validated with great care. The uncertainties in the LiDAR-estimated AGB propagate further in the wall-to-wall map and can be up to 150%. Thus, when a two-stage up-scaling method is applied, it is crucial to characterize the uncertainties at all stages in order to generate robust results. Considering the findings mentioned above LiDAR can be used as an extension to NFI for example for areas that are difficult or not possible to access.
了解和管理碳循环过程以及支持应对气候变化缓解和适应的国际政策,需要大面积地上生物量(AGB)空间分布的信息。此外,这些产品为当地利益相关者制定可持续管理战略提供了重要的基线数据。利用遥感数据可以提供从局部到全球尺度的AGB空间明确信息。在本研究中,我们使用卫星遥感数据和机器学习方法绘制了墨西哥全国森林AGB地图。我们使用两种情景对AGB进行建模:(1)广泛的全国森林资源清查(NFI),以及(2)机载激光雷达(LiDAR)作为参考数据。最后,我们将现场测量的不确定性传播到LiDAR衍生的AGB以及全国无缝森林AGB地图。
与独立验证数据集相比,估计的AGB地图(NFI校准和LiDAR校准)在三个不同尺度上显示出相似的拟合优度统计量(R,均方根误差(RMSE))。我们在热带茂密森林中观察到不同的AGB空间模式,在这些森林中没有或只有有限数量的NFI数据,LiDAR校准地图中的AGB值更高。与传统的从实地到卫星的尺度放大方法相比,我们基于两阶段尺度放大方法(即从实地测量到LiDAR,再从基于LiDAR的估计到卫星图像)估计的AGB地图中的不确定性要高得多。通过去除具有高不确定性的基于LiDAR的AGB像素,可以估计出与仅用NFI数据校准的不确定性相似的全国森林AGB。
由于与实地清查数据相比,LiDAR数据可以更快地获取且覆盖更大的区域,因此LiDAR对于重复性的大规模AGB测绘很有吸引力。在本研究中,我们表明,对于大面积AGB估计的两阶段尺度放大方法需要非常谨慎地进行分析和验证。LiDAR估计的AGB中的不确定性在无缝地图中会进一步传播,可能高达150%。因此,当应用两阶段尺度放大方法时,至关重要的是要表征所有阶段的不确定性,以便产生可靠的结果。考虑到上述发现,LiDAR可作为NFI的扩展,例如用于难以或无法进入的区域。