De Alwis Watuthanthrige Nethmi, Moskalenko Anastasiia, Kroeger Asja A, Coote Michelle L, Truong Nghia P, Anastasaki Athina
Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia.
Chem Sci. 2025 Jan 22;16(8):3516-3522. doi: 10.1039/d4sc07518h. eCollection 2025 Feb 19.
The labile end-groups inherent to many controlled radical polymerization methodologies, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, can trigger the efficient chemical recycling of polymethacrylates yielding high percentages of pristine monomer. Yet, current thermal solution ATRP and RAFT depolymerization strategies require relatively high temperatures ( 120-170 °C) to proceed, with slower depolymerization rates, and moderate yields often reported under milder reaction conditions ( lower temperatures). In this work, we seek to promote the low temperature RAFT depolymerization of polymethacrylates regulating the Z-group substitution of dithiobenzoate. While electron-withdrawing and substituents, including trifluoromethyl (CF) and trifluoromethoxy (OCF), compromised the percentage of monomer recovery at 90 °C ( 18% of conversion), instead the incorporation of electron-donating groups in the benzene ring, such as methoxy (OMe) and tertiary butoxy (OtBu), had a remarkable effect leading to up to four times higher conversions ( 75%). Notably, electron-withdrawing Z-groups imposed control over depolymerization, reflected in the gradual decrease of the molecular weight during the reaction, as opposed to electron-donating groups which underwent a more uncontrolled depolymerization pathway. Density Functional Theory (DFT) calculations revealed accelerated bond fragmentation for electron-donating Z-groups, further supporting our findings. Taken altogether, this work highlights the importance of RAFT agent selection to either lower the reaction's temperature while maintaining high conversions, or induce control over the depolymerization.
包括原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合在内的许多可控自由基聚合方法所固有的不稳定端基,能够引发聚甲基丙烯酸酯的高效化学循环,从而产生高比例的原始单体。然而,目前的热溶液ATRP和RAFT解聚策略需要相对较高的温度(120-170°C)才能进行,解聚速率较慢,并且在较温和的反应条件(较低温度)下通常报道的产率适中。在这项工作中,我们试图通过调节二硫代苯甲酸酯的Z-基团取代来促进聚甲基丙烯酸酯的低温RAFT解聚。虽然吸电子取代基,包括三氟甲基(CF)和三氟甲氧基(OCF),在90°C时会降低单体回收率(转化率为18%),但相反,在苯环中引入供电子基团,如甲氧基(OMe)和叔丁氧基(OtBu),会产生显著效果,导致转化率提高四倍(75%)。值得注意的是,吸电子Z-基团对解聚起到了控制作用,这反映在反应过程中分子量逐渐降低,而供电子基团则经历了更不受控制的解聚途径。密度泛函理论(DFT)计算表明供电子Z-基团的键断裂加速,进一步支持了我们的发现。综上所述,这项工作突出了RAFT试剂选择对于在保持高转化率的同时降低反应温度或控制解聚的重要性。