Whitfield Richard, Jones Glen R, Truong Nghia P, Manring Lewis E, Anastasaki Athina
Laboratory of Polymeric Materials, D-MATL, ETH Zurich, Vladimir-Prelog-Weg-5, 8093, Zurich, Switzerland.
1346 Manitou Road, Santa Barbara, CA 93101, USA.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202309116. doi: 10.1002/anie.202309116. Epub 2023 Aug 11.
Although controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer. Instead, ATRP-synthesized polymers can only depolymerize at significantly higher temperatures (>350 °C) through random backbone scission. To aid a more complete depolymerization at even lower temperatures, we performed a facile and quantitative end-group modification strategy in which both ATRP and RAFT end-groups were successfully converted to macromonomers. The macromonomers triggered a lower temperature bulk depolymerization with an onset at 150 °C yielding up to 90 % of monomer regeneration. The versatility of the methodology was demonstrated by a scalable depolymerization (≈10 g of starting polymer) retrieving 84 % of the starting monomer intact which could be subsequently used for further polymerization. This work presents a new low-energy approach for depolymerizing controlled radical polymers and creates many future opportunities as high-yielding, solvent-free and scalable depolymerization methods are sought.
尽管可控自由基聚合是制备精密高分子材料的一种出色方法,但尽管化学循环具有重要意义,对于使该过程逆向进行以回收起始单体的研究却少得多。在此,我们研究了在相同条件下可逆加成断裂链转移(RAFT)和原子转移自由基聚合(ATRP)合成的聚合物的本体解聚。由于RAFT端基部分原位转化为大分子单体,RAFT合成的聚合物在相对低温且无溶剂的条件下解聚回到单体。相反,ATRP合成的聚合物只能在显著更高的温度(>350°C)下通过随机主链断裂进行解聚。为了在更低温度下实现更完全的解聚,我们实施了一种简便且定量的端基修饰策略,其中ATRP和RAFT端基均成功转化为大分子单体。这些大分子单体引发了较低温度的本体解聚,起始温度为150°C,单体再生率高达90%。该方法的通用性通过可扩展的解聚(约10 g起始聚合物)得以证明,可完整回收84%的起始单体,随后可将其用于进一步聚合。这项工作提出了一种用于解聚可控自由基聚合物的新型低能量方法,并在寻求高产率、无溶剂且可扩展的解聚方法方面创造了许多未来机会。