文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在医学成像中使用深度学习框架提高乳腺癌的早期检测准确性。

Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging.

作者信息

Patro Bachu Dushmanta Kumar

机构信息

Department of Computer Science and Engineering, Rajkiya Engineering College, Kannauj, India; Affiliated with Abdul Kalam Technical University(AKTU), Jankipuram Vistar, Lucknow, Uttar Pradesh, 226031, India.

出版信息

Comput Biol Med. 2025 Mar;187:109751. doi: 10.1016/j.compbiomed.2025.109751. Epub 2025 Jan 29.


DOI:10.1016/j.compbiomed.2025.109751
PMID:39884057
Abstract

PROBLEM: The most prevalent cancer in women is breast cancer (BC), and effective treatment depends on being detected early. Many people seek medical imaging techniques to help in the early detection of problems, but results often need to be corrected for increased accuracy. AIM: A new deep learning approach for medical images is applied in the detection of BC in this paper. Early detection is carried out through the proposed method using a combination of Convolutional Neural Network (CNNs) with feature selection and fusion methods. METHODS: The proposed method may decrease the mortality rate due to the early-stage detection of BC with high precision. In this work, the proposed Deep Learning Framework (DLF) uses many levels of artificial neural networks to sort images of BC into categories correctly. RESULTS: This proposed method further increases the scalability of convolutional recurrent networks. It also achieved 94.93 % accuracy, 93.66 % precision, 89.21 % recall and 98.86 % F1-score. Through this approach, cancer tumors in a specific location can be detected more accurately. CONCLUSION: The existing methods are dependent mainly on manually selecting and extracting features. The proposed framework automatically learns and finds relevant features from images that result in outperforming existing methods.

摘要

问题:女性中最常见的癌症是乳腺癌(BC),有效的治疗取决于早期发现。许多人寻求医学成像技术来帮助早期发现问题,但结果往往需要校正以提高准确性。 目的:本文将一种新的医学图像深度学习方法应用于乳腺癌检测。通过使用卷积神经网络(CNN)与特征选择和融合方法相结合的提议方法进行早期检测。 方法:所提议的方法可能由于高精度早期检测乳腺癌而降低死亡率。在这项工作中,所提议的深度学习框架(DLF)使用多层人工神经网络将乳腺癌图像正确分类。 结果:该提议方法进一步提高了卷积循环网络的可扩展性。它还实现了94.93%的准确率、93.66%的精确率、89.21%的召回率和98.86%的F1分数。通过这种方法,可以更准确地检测特定位置的癌症肿瘤。 结论:现有方法主要依赖于手动选择和提取特征。所提议的框架自动从图像中学习并找到相关特征,从而优于现有方法。

相似文献

[1]
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging.

Comput Biol Med. 2025-3

[2]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[3]
Accurate phenotyping of luminal A breast cancer in magnetic resonance imaging: A new 3D CNN approach.

Comput Biol Med. 2025-5

[4]
Breast histopathological imaging using ultra-fast fluorescence confocal microscopy to identify cancer lesions at early stage.

Microsc Res Tech. 2024-12

[5]
Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Sci Rep. 2025-4-24

[6]
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.

Asian Pac J Cancer Prev. 2019-11-1

[7]
Multi-cancer early detection based on serum surface-enhanced Raman spectroscopy with deep learning: a large-scale case-control study.

BMC Med. 2025-2-21

[8]
Interactively Fusing Global and Local Features for Benign and Malignant Classification of Breast Ultrasound Images.

Ultrasound Med Biol. 2025-3

[9]
Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks.

Comput Methods Programs Biomed. 2020-7

[10]
New one-step model of breast tumor locating based on deep learning.

J Xray Sci Technol. 2019

引用本文的文献

[1]
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.

Mayo Clin Proc Digit Health. 2025-7-18

[2]
Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images.

Sci Rep. 2025-4-19

[3]
Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights.

Breast Cancer Res. 2025-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索