Suppr超能文献

通过关注变形图像的解剖合理性和纹理质量,利用深度学习图像配准技术进行成人和胎儿超声心动图中的心脏运动估计。

Deep learning image registration for cardiac motion estimation in adult and fetal echocardiography via a focus on anatomic plausibility and texture quality of warped image.

作者信息

Hasan Md Kamrul, Zhu Haobo, Yang Guang, Yap Choon Hwai

机构信息

Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.

Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK; Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, UK.

出版信息

Comput Biol Med. 2025 Mar;187:109719. doi: 10.1016/j.compbiomed.2025.109719. Epub 2025 Jan 29.

Abstract

Temporal echocardiography image registration is important for cardiac motion estimation, myocardial strain assessments, and stroke volume quantifications. Deep learning image registration (DLIR) is a promising way to achieve consistent and accurate registration results with low computational time. DLIR seeks the image deformation that enables the moving image to be warped to match the fixed image. We propose that, during DLIR training, a greater focus on the warped moving image's anatomic plausibility and image texture can support robust results, and we show that it has sufficient robustness to be applied to both fetal and adult echocardiography. Our proposed framework includes (1) an anatomic shape-encoded constraint to preserve physiological myocardial and left ventricular anatomical topologies in the warped image, (2) a data-driven texture constraint to preserve good texture features in the warped image, and (3) a multi-scale training algorithm to improve accuracy. Our experiments demonstrate a strong correlation between the shape-encoded constraint and good anatomical topology and between the data-driven texture constraint and image textures. They improve different aspects of registration results in a non-overlapping way. We demonstrate that these methods can successfully register both fetal and adult echocardiography using our multi-demographic fetal dataset and the public CAMUS adult dataset, despite the inherent differences between adult and fetal echocardiography. Our approach also outperforms traditional non-DL gold standard registration approaches, including optical flow and Elastix, and could be translated into more accurate and precise clinical quantification of cardiac ejection fraction, demonstrating potential for clinical utility.

摘要

时域超声心动图图像配准对于心脏运动估计、心肌应变评估和心输出量定量分析至关重要。深度学习图像配准(DLIR)是一种很有前景的方法,能够以较低的计算时间实现一致且准确的配准结果。DLIR寻找能使运动图像扭曲以匹配固定图像的图像变形。我们提出,在DLIR训练期间,更多地关注扭曲后运动图像的解剖合理性和图像纹理能够支持稳健的结果,并且我们证明它具有足够的稳健性,可应用于胎儿和成人超声心动图。我们提出的框架包括:(1)一种解剖形状编码约束,以在扭曲图像中保留生理心肌和左心室的解剖拓扑结构;(2)一种数据驱动的纹理约束,以在扭曲图像中保留良好的纹理特征;(3)一种多尺度训练算法,以提高准确性。我们的实验表明,形状编码约束与良好的解剖拓扑结构之间以及数据驱动的纹理约束与图像纹理之间存在很强的相关性。它们以不重叠的方式改善了配准结果的不同方面。我们证明,尽管成人和胎儿超声心动图存在固有差异,但使用我们的多人群胎儿数据集和公开的CAMUS成人数据集,这些方法能够成功地对胎儿和成人超声心动图进行配准。我们的方法还优于传统的非深度学习金标准配准方法,包括光流法和Elastix法,并且可以转化为更准确和精确的心脏射血分数临床定量分析,显示出临床应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验