Suppr超能文献

使用新型深度学习模型集成方法对胎儿超声检查中的四腔心视图图像进行分割。

Segmentation of four-chamber view images in fetal ultrasound exams using a novel deep learning model ensemble method.

机构信息

Tecgraf Institute, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

Tecgraf Institute, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Comput Biol Med. 2024 Dec;183:109188. doi: 10.1016/j.compbiomed.2024.109188. Epub 2024 Oct 11.

Abstract

Fetal echocardiography, a specialized ultrasound application commonly utilized for fetal heart assessment, can greatly benefit from automated segmentation of anatomical structures, aiding operators in their evaluations. We introduce a novel approach that combines various deep learning models for segmenting key anatomical structures in 2D ultrasound images of the fetal heart. Our ensemble method combines the raw predictions from the selected models, obtaining the optimal set of segmentation components that closely approximate the distribution of the fetal heart, resulting in improved segmentation outcomes. The selection of these components involves sequential and hierarchical geometry filtering, focusing on the analysis of shape and relative distances. Unlike other ensemble strategies that average predictions, our method works as a shape selector, ensuring that the final segmentation aligns more accurately with anatomical expectations. Considering a large private dataset for model training and evaluation, we present both numerical and visual experiments highlighting the advantages of our method in comparison to the segmentations produced by the individual models and a conventional average ensemble. Furthermore, we show some applications where our method proves instrumental in obtaining reliable estimations.

摘要

胎儿超声心动图是一种常用于胎儿心脏评估的专业超声应用,其解剖结构的自动分割可以极大地受益于自动化,帮助操作人员进行评估。我们引入了一种新方法,该方法结合了各种深度学习模型,用于分割胎儿心脏二维超声图像中的关键解剖结构。我们的集成方法结合了所选模型的原始预测,获得了最佳的分割组件集,这些组件集更接近胎儿心脏的分布,从而提高了分割结果。这些组件的选择涉及顺序和层次几何滤波,侧重于形状和相对距离的分析。与其他平均预测的集成策略不同,我们的方法作为形状选择器,确保最终分割更准确地符合解剖学预期。考虑到用于模型训练和评估的大型私人数据集,我们展示了数值和可视化实验,突出了我们的方法相对于各个模型和传统平均集成产生的分割的优势。此外,我们展示了一些应用场景,其中我们的方法在获得可靠估计方面非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验