Suppr超能文献

EHM:通过高阶矩引导的对比学习在无监督域适应中探索动态对齐和层次聚类

EHM: Exploring dynamic alignment and hierarchical clustering in unsupervised domain adaptation via high-order moment-guided contrastive learning.

作者信息

Xu Tengyue, Dan Jun

机构信息

School of Management, Zhejiang University, Hangzhou, 310058, China.

College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Neural Netw. 2025 May;185:107188. doi: 10.1016/j.neunet.2025.107188. Epub 2025 Jan 22.

Abstract

Unsupervised domain adaptation (UDA) aims to annotate unlabeled target domain samples using transferable knowledge learned from the labeled source domain. Optimal transport (OT) is a widely adopted probability metric in transfer learning for quantifying domain discrepancy. However, many existing OT-based UDA methods usually employ an entropic regularization term to solve the OT optimization problem, inevitably resulting in a biased estimation of domain discrepancy. Furthermore, to achieve precise alignment of class distributions, numerous UDA methods commonly employ deep features for guiding contrastive learning, overlooking the loss of discriminative information. Additionally, prior studies frequently use conditional entropy regularization term to cluster unlabeled target samples, which may guide the model toward optimizing in the wrong direction. To address the aforementioned issues, this paper proposes a new UDA framework called EHM, which employs a Dynamic Domain Alignment (DDA) strategy, a Reliable High-order Contrastive Alignment (RHCA) strategy, and a Trustworthy Hierarchical Clustering (THC) strategy. Specially, DDA leverages a dynamically adjusted Sinkhorn divergence to measure domain discrepancy, effectively eliminating the biased estimation issue. Our RHCA skillfully conducts contrastive learning in a high-order moment space, significantly enhancing the representation power of transferable features and reducing the domain discrepancy at the class-level. Moreover, THC integrates multi-view information to guide unlabeled samples towards achieving robust clustering. Extensive experiments on various benchmarks demonstrate the effectiveness of our EHM.

摘要

无监督域适应(UDA)旨在利用从有标签的源域中学到的可转移知识来标注无标签的目标域样本。最优传输(OT)是迁移学习中广泛采用的一种概率度量,用于量化域差异。然而,许多现有的基于OT的UDA方法通常采用熵正则化项来解决OT优化问题,不可避免地导致域差异的偏差估计。此外,为了实现类分布的精确对齐,许多UDA方法通常采用深度特征来指导对比学习,而忽略了判别信息的损失。另外,先前的研究经常使用条件熵正则化项对无标签的目标样本进行聚类,这可能会引导模型朝着错误的方向进行优化。为了解决上述问题,本文提出了一种名为EHM的新UDA框架,该框架采用了动态域对齐(DDA)策略、可靠高阶对比对齐(RHCA)策略和可信层次聚类(THC)策略。具体来说,DDA利用动态调整的Sinkhorn散度来度量域差异,有效消除偏差估计问题。我们的RHCA在高阶矩空间中巧妙地进行对比学习,显著增强了可转移特征的表示能力,并减少了类级别的域差异。此外,THC整合多视图信息,引导无标签样本实现稳健聚类。在各种基准上进行的大量实验证明了我们的EHM的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验