Suppr超能文献

Domain-guided conditional diffusion model for unsupervised domain adaptation.

作者信息

Zhang Yulong, Chen Shuhao, Jiang Weisen, Zhang Yu, Lu Jiangang, Kwok James T

机构信息

State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.

Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

出版信息

Neural Netw. 2025 Apr;184:107031. doi: 10.1016/j.neunet.2024.107031. Epub 2024 Dec 26.

Abstract

Limited transferability hinders the performance of a well-trained deep learning model when applied to new application scenarios. Recently, Unsupervised Domain Adaptation (UDA) has achieved significant progress in addressing this issue via learning domain-invariant features. However, the performance of existing UDA methods is constrained by the possibly large domain shift and limited target domain data. To alleviate these issues, we propose a Domain-guided Conditional Diffusion Model (DCDM), which generates high-fidelity target domain samples, making the transfer from source domain to target domain easier. DCDM introduces class information to control labels of the generated samples, and a domain classifier to guide the generated samples towards the target domain. Extensive experiments on various benchmarks demonstrate that DCDM brings a large performance improvement to UDA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验