Suppr超能文献

基于缝线的提眉和皱纹治疗的解剖学考量

Anatomical considerations for thread-based brow lifting and wrinkle treatment.

作者信息

Hong Gi-Woong, Wan Jovian, Yoon Song-Eun, Wong Sky, Yi Kyu-Ho

机构信息

Samskin Plastic Surgery Clinic, Seoul, South Korea.

Medical Research Inc., Wonju, South Korea.

出版信息

J Dermatolog Treat. 2025 Dec;36(1):2448265. doi: 10.1080/09546634.2024.2448265. Epub 2025 Jan 30.

Abstract

This review explores the anatomical considerations and technical aspects of thread lifting for the forehead and eyebrow, focusing on the relationships between vascular structures, muscular anatomy, and age-related changes in the forehead-eyebrow complex. It highlights the critical importance of understanding neurovascular pathways, particularly the supratrochlear and supraorbital vessels, as well as the appropriate thread placement techniques necessary for optimal outcomes. The review demonstrates that I-shaped threads, when placed beneath the frontalis muscle, provide a safer and equally effective alternative to traditional U-shaped designs. Additionally, the review emphasizes the significance of preoperative assessment, especially the evaluation of tissue mobility and adhesion patterns, in predicting procedural success. The review concludes that combining thread lifting with volumising monofilaments offers a comprehensive approach to rejuvenating the forehead-glabellar region, while minimizing the risk of complications. This study's clinical impact lies in its potential to enhance both the safety and efficacy of thread lifting procedures, offering practitioners a refined technique for esthetic rejuvenation of the forehead and eyebrow complex.

摘要

本综述探讨了前额和眉毛埋线提升的解剖学考量及技术层面,重点关注血管结构、肌肉解剖以及前额-眉毛复合体的年龄相关变化之间的关系。它强调了理解神经血管通路的至关重要性,特别是滑车上血管和眶上血管,以及为实现最佳效果所需的合适埋线放置技术。该综述表明,当I形线置于额肌下方时,可为传统U形设计提供一种更安全且同样有效的替代方案。此外,该综述强调了术前评估的重要性,尤其是对组织活动性和粘连模式的评估,对预测手术成功与否具有重要意义。该综述得出结论,将埋线提升与填充单丝相结合,可为前额-眉间区域的年轻化提供一种全面的方法,同时将并发症风险降至最低。本研究的临床意义在于其有可能提高埋线提升手术的安全性和有效性,为从业者提供一种用于前额和眉毛复合体美学年轻化的精细技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验