Suppr超能文献

MetaQ:通过单细胞量化实现快速、可扩展且准确的元细胞推断。

MetaQ: fast, scalable and accurate metacell inference via single-cell quantization.

作者信息

Li Yunfan, Li Hancong, Lin Yijie, Zhang Dan, Peng Dezhong, Liu Xiting, Xie Jie, Hu Peng, Chen Lu, Luo Han, Peng Xi

机构信息

School of Computer Science, Sichuan University, Chengdu, Sichuan, China.

Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Nat Commun. 2025 Jan 31;16(1):1205. doi: 10.1038/s41467-025-56424-6.

Abstract

To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference. This approach reduces computational complexity from exponential to linear while maintaining or surpassing the performance of existing metacell algorithms. Extensive experiments demonstrate that MetaQ excels in downstream tasks such as cell type annotation, developmental trajectory inference, batch integration, and differential expression analysis. Thanks to its superior efficiency and effectiveness, MetaQ makes analyzing datasets with millions of cells practical, offering a powerful solution for single-cell studies in the era of high-throughput profiling.

摘要

为了克服分析大规模单细胞测序数据的计算障碍,我们引入了MetaQ,这是一种元细胞算法,它可以线性运行时间和恒定内存使用量扩展到任意大的数据集。受细胞发育的启发,MetaQ将每个元细胞概念化为生物学上相似细胞的共同祖先。通过将细胞量化到一个离散的码本中,其中每个条目代表一个能够重建它所量化的原始细胞的元细胞,MetaQ识别出同质细胞子集,以进行高效和准确的元细胞推断。这种方法将计算复杂度从指数级降低到线性级,同时保持或超越现有元细胞算法的性能。大量实验表明,MetaQ在细胞类型注释、发育轨迹推断、批次整合和差异表达分析等下游任务中表现出色。由于其卓越的效率和有效性,MetaQ使分析包含数百万个细胞的数据集成为现实,为高通量分析时代的单细胞研究提供了一个强大的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85ea/11782697/5fe6e4e36b57/41467_2025_56424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验