Suppr超能文献

2023年埃塞俄比亚阿姆哈拉地区转诊医院医护人员基于电子学习的持续专业发展的使用意向及其预测因素:采用改进的UTAUT-2模型

Intention to use eLearning-based continuing professional development and its predictors among healthcare professionals in Amhara region referral hospitals, Ethiopia, 2023: using modified UTAUT-2 model.

作者信息

Kelkay Jenberu Mekurianew, Wubante Sisay Maru, Anteneh Deje Sendek, Takilo Mitiku Kassaw, Gebeyehu Chernet Desalegn, Alameraw Temesgen Ayenew, Gashu Kassahun Dessie

机构信息

Departments of Health Informatics, School of Public Health, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia.

Department of Health Informatics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

BMC Health Serv Res. 2025 Jan 30;25(1):178. doi: 10.1186/s12913-025-12317-4.

Abstract

BACKGROUND

Continuing Professional Development (CPD) is provided through in-service programs organized based on competency development and lifelong learning for healthcare professionals to stay fit with the required knowledge and skills. However, healthcare professionals' financial constraints and tight schedules sending them away from the workplace for CPD training is a challenge. eLearning is becoming the best solution to overcome those barriers and create accessible, efficient, flexible, and convenient professional development. However, evidence is limited on health professionals' intention to use eLearning-based CPD and its predictors. Hence this study aimed to assess healthcare professionals' intention to use eLearning-based CPD and its predictors in Amhara region referral hospitals, in Ethiopia.

METHODS

A cross-sectional study was conducted from March 28 to April 28, 2023. A total of 976 healthcare professionals participated in this study. Proportional allocation and simple random sampling were used to select participants for the study. UTAUT2 model was applied to develop a theoretical framework. A structured self-administered questionnaire was used and a 5% pretest was performed. Data were entered into Epi data 4.6 and exported to SPSS 26 for descriptive analysis. AMOS 23 SEM was also used to describe and assess the degree and significance of relationships between variables.

RESULTS

About 51.8% (506/976) (95% CI: 48.7-55.0) of participants have the intention to use eLearning for CPD. Performance expectancy (β = 0.233, p-value < 0.01), effort expectancy (β = 0.082, p-value < 0.05), facilitating condition (β = 0.102, p-value < 0.05), hedonic motivation (β = 0.199, P-value < 0.001), habit (β = 0.473, P-value < 0.001), and computer literacy (β = 0.116, p-value < 0.001) had a positive relationship with intention to use eLearning based CPD. Age and gender were also a moderator of the habit of using eLearning based on CPD.

CONCLUSION

and recommendation. Overall, healthcare professionals' intention to use eLearning-based CPD was found low. Performance expectancy, effort expectancy, facilitating condition, hedonic motivation, habit, and computer literacy had a significantly positive influence on the intention to use eLearning-based CPD. The development of a user-friendly eLearning-based CPD development that meets user expectations can enhance the intention to use.

摘要

背景

持续专业发展(CPD)是通过基于能力发展和终身学习组织的在职培训项目来提供的,以使医疗保健专业人员掌握所需的知识和技能。然而,医疗保健专业人员面临经济限制和日程安排紧张的问题,这使得他们难以离开工作岗位参加CPD培训,这是一个挑战。电子学习正成为克服这些障碍并创造可及、高效、灵活且便捷的专业发展的最佳解决方案。然而,关于卫生专业人员使用基于电子学习的CPD的意愿及其预测因素的证据有限。因此,本研究旨在评估埃塞俄比亚阿姆哈拉地区转诊医院的医疗保健专业人员使用基于电子学习的CPD的意愿及其预测因素。

方法

于2023年3月28日至4月28日进行了一项横断面研究。共有976名医疗保健专业人员参与了本研究。采用比例分配和简单随机抽样的方法选择研究参与者。应用UTAUT2模型构建理论框架。使用结构化的自填式问卷,并进行了5%的预测试。数据录入Epi data 4.6并导出到SPSS 26进行描述性分析。还使用AMOS 23 SEM来描述和评估变量之间关系的程度和显著性。

结果

约51.8%(506/976)(95%置信区间:48.7 - 55.0)的参与者有意愿使用电子学习进行CPD。绩效期望(β = 0.233,p值 < 0.01)、努力期望(β = 0.082,p值 < 0.05)、促进条件(β = 0.102,p值 < 0.05)、享乐动机(β = 0.199,P值 < 0.001)、习惯(β = 0.473,P值 < 0.001)和计算机素养(β = 0.116,p值 < 0.001)与使用基于电子学习的CPD的意愿呈正相关。年龄和性别也是基于CPD使用电子学习习惯的调节因素。

结论与建议。总体而言,发现医疗保健专业人员使用基于电子学习的CPD的意愿较低。绩效期望、努力期望、促进条件、享乐动机、习惯和计算机素养对使用基于电子学习的CPD的意愿有显著的正向影响。开发符合用户期望的用户友好型基于电子学习的CPD可以增强使用意愿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/077a/11780820/5e6253019781/12913_2025_12317_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验