Cihak Heather L, Kilpatrick Zachary P
University of Colorado Boulder, Boulder, CO 80309 USA.
Applied Mathematics, University of Colorado, Boulder, CO 80309 USA.
Multiscale Model Simul. 2024;22(1):178-203. doi: 10.1137/23m1582655. Epub 2024 Jan 17.
The distinct timescales of synaptic plasticity and neural activity dynamics play an important role in the brain's learning and memory systems. Activity-dependent plasticity reshapes neural circuit architecture, determining spontaneous and stimulus-encoding spatiotemporal patterns of neural activity. Neural activity bumps maintain short term memories of continuous parameter values, emerging in spatially organized models with short-range excitation and long-range inhibition. Previously, we demonstrated nonlinear Langevin equations derived using an interface method which accurately describe the dynamics of bumps in continuum neural fields with separate excitatory/inhibitory populations. Here we extend this analysis to incorporate effects of short term plasticity that dynamically modifies connectivity described by an integral kernel. Linear stability analysis adapted to these piecewise smooth models with Heaviside firing rates further indicates how plasticity shapes the bumps' local dynamics. Facilitation (depression), which strengthens (weakens) synaptic connectivity originating from active neurons, tends to increase (decrease) stability of bumps when acting on excitatory synapses. The relationship is inverted when plasticity acts on inhibitory synapses. Multiscale approximations of the stochastic dynamics of bumps perturbed by weak noise reveal that the plasticity variables evolve to slowly diffusing and versions of their stationary profiles. Nonlinear Langevin equations associated with bump positions or interfaces coupled to slowly evolving projections of plasticity variables accurately describe how these smoothed synaptic efficacy profiles can tether or repel wandering bumps.
突触可塑性和神经活动动力学的不同时间尺度在大脑的学习和记忆系统中起着重要作用。活动依赖的可塑性重塑神经回路结构,决定神经活动的自发和刺激编码时空模式。神经活动脉冲维持连续参数值的短期记忆,出现在具有短程兴奋和长程抑制的空间组织模型中。此前,我们展示了使用界面方法推导的非线性朗之万方程,该方程准确描述了具有分离的兴奋性/抑制性群体的连续神经场中脉冲的动力学。在这里,我们扩展了这一分析,以纳入短期可塑性的影响,短期可塑性动态修改由积分核描述的连接性。适用于这些具有阶跃发放率的分段光滑模型的线性稳定性分析进一步表明可塑性如何塑造脉冲的局部动力学。易化(抑制)作用于兴奋性突触时会增强(减弱)来自活跃神经元的突触连接性,这往往会增加(降低)脉冲的稳定性。当可塑性作用于抑制性突触时,这种关系会反转。受弱噪声扰动的脉冲随机动力学的多尺度近似表明,可塑性变量演化为缓慢扩散并具有其稳态分布的版本。与脉冲位置或界面相关的非线性朗之万方程与可塑性变量的缓慢演化投影耦合,准确描述了这些平滑的突触效能分布如何束缚或排斥游走的脉冲。