Suppr超能文献

视觉工作记忆中的纠错动力学。

Error-correcting dynamics in visual working memory.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA.

Department of Psychology, Princeton University, Princeton, NJ, 08540, USA.

出版信息

Nat Commun. 2019 Jul 29;10(1):3366. doi: 10.1038/s41467-019-11298-3.

Abstract

Working memory is critical to cognition, decoupling behavior from the immediate world. Yet, it is imperfect; internal noise introduces errors into memory representations. Such errors have been shown to accumulate over time and increase with the number of items simultaneously held in working memory. Here, we show that discrete attractor dynamics mitigate the impact of noise on working memory. These dynamics pull memories towards a few stable representations in mnemonic space, inducing a bias in memory representations but reducing the effect of random diffusion. Model-based and model-free analyses of human and monkey behavior show that discrete attractor dynamics account for the distribution, bias, and precision of working memory reports. Furthermore, attractor dynamics are adaptive. They increase in strength as noise increases with memory load and experiments in humans show these dynamics adapt to the statistics of the environment, such that memories drift towards contextually-predicted values. Together, our results suggest attractor dynamics mitigate errors in working memory by counteracting noise and integrating contextual information into memories.

摘要

工作记忆对于认知至关重要,它使行为与即时世界解耦。然而,工作记忆并不完美;内部噪声会给记忆表示引入错误。这些错误随着时间的推移而积累,并随着同时保存在工作记忆中的项目数量的增加而增加。在这里,我们表明离散吸引子动力学可以减轻噪声对工作记忆的影响。这些动力学将记忆拉向记忆空间中几个稳定的表示,从而在记忆表示中产生偏差,但减少随机扩散的影响。对人类和猴子行为的基于模型和无模型分析表明,离散吸引子动力学解释了工作记忆报告的分布、偏差和精度。此外,吸引子动力学是自适应的。随着记忆负荷增加,噪声增加,它们的强度也会增加,并且人类实验表明这些动力学适应环境的统计信息,使得记忆向上下文预测的值漂移。总之,我们的结果表明,吸引子动力学通过抵消噪声和将上下文信息整合到记忆中来减轻工作记忆中的错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验