Suppr超能文献

代谢组学整合基因组学方法:了解阿霉素处理的MCF-7乳腺癌细胞中的多药耐药表型以及ABCA1/EGFR/PI3k/PTEN的相互作用。

Metabolomics integrated genomics approach: Understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin and ABCA1/EGFR/PI3k/PTEN crosstalk.

作者信息

Kadry Mai O, Abd-Ellatef Gamal Eldein Fathy, Ammar Naglaa M, Hassan Heba A, Hussein Noha S, Kamel Nahla N, Soltan Maha M, Abdel-Megeed Rehab M, Abdel-Hamid Abdel-Hamid Z

机构信息

National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt.

National Research Center, Biology Unit, Central Laboratory for Pharmaceutical and drug industries Research Institute, Chemistry of Medicinal Plants Department, Al Bohouth Street, Dokki, Egypt.

出版信息

Toxicol Rep. 2024 Dec 25;14:101884. doi: 10.1016/j.toxrep.2024.101884. eCollection 2025 Jun.

Abstract

Resistance of cancer cells, especially breast cancer, to therapeutic medicines represents a major clinical obstacle that impedes the stages of treatment. Carcinoma cells that acquire resistance to therapeutic drugs can reprogram their own metabolic processes as a way to overcome the effectiveness of treatment and continue their reproduction processes. Despite the recent developments in medical research in the field of drug resistance, which showed some explanations for this phenomenon, the real explanation, along with the ability to precisely predict the possibility of its occurrence in breast cancer cells, still necessitates a deep consideration of the dynamics of the tumor's response to treatment. For this purpose the current study, combined both metabolomics and genomics analysis as the most advanced omics technologies that can provide a potential en route for inventing novel strategies to perform prospective, prognostic and diagnostic biomarkers for drug resistance phenomena in mammary cancer. Doxorubicin is the currently available breast cancer chemotherapeutic medication nevertheless; it was demonstrated to cause drug resistance, which impairs patient survival and prognosis by prompting proliferation, cell cycle progression, and preventing apoptosis, interactions between signaling pathways triggered drug resistance. In this research, metabolomics analysis based on GC-MS coupled with multivariable analysis was performed on MCF-7 and DOX resistant cell lines; MCF-7/adr cultured cells in addition to, further confirmation via inducing mammary cancer in rats via two doses of 7,12-dimethylbenz(a) anthracene (DMBA) (50 mg/kg and 25 mg/kg) proceeded by doxorubicin (5 mg/kg) treatment for one month. The metabolomics results pointed out that mannitol, myoinositol, glycine, α-linolenic acid, oleic acid and stearic acid have AUC values: 0.14, 0.5, 0.7, 0.1, 0.02, -0.02 (1, 1) respectively. Glycine and myoinositol metabolites provided the best discriminative power in the wild and resistance MCF-7 phenotypes. Meanwhile, results revealed a significant crosstalk between the alternation in oxidative stress biomarkers as well as Arginase II tumor biomarker and the molecular assessment of ABCA1 and P53 gene expression that displayed a marked reduction in addition to, the obvious elevation in resistance and apoptotic biomarkers EGFR/PI3k/AKT/PTEN signaling pathway upon DMBA administration. Data revealed a significant alternation in signaling pathways related to resistance upon doxorubicin administration that affect lipid metabolism in breast cancer. In conclusion, Metabolomics integrated genomics analysis may be promising in understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin through modulating ABCA1/EGFR/P53/PI3k/PTEN signaling pathway thus metabolic biomarkers in addition to molecular biomarkers elucidate the challenges fronting profitable therapy of mammary cancer and an pioneering approaches that metabolomics compromises to improve recognizing drug resistance in breast carcinoma.

摘要

癌细胞,尤其是乳腺癌细胞对治疗药物的耐药性是阻碍治疗进程的一个主要临床障碍。获得对治疗药物耐药性的癌细胞可以重新编程自身的代谢过程,以此来克服治疗的有效性并继续其增殖过程。尽管在耐药性领域的医学研究最近有所进展,对这一现象给出了一些解释,但真正的解释以及精确预测其在乳腺癌细胞中发生可能性的能力,仍需要深入考虑肿瘤对治疗反应的动态变化。为此,本研究将代谢组学和基因组学分析相结合,这两种技术是最先进的组学技术,可为发明新策略提供潜在途径,以实现对乳腺癌耐药现象进行前瞻性、预后性和诊断性生物标志物的检测。阿霉素是目前可用的乳腺癌化疗药物,然而,它被证明会导致耐药性,通过促进增殖、细胞周期进程以及阻止细胞凋亡来损害患者的生存和预后,信号通路之间的相互作用引发了耐药性。在本研究中,基于气相色谱 - 质谱联用(GC - MS)并结合多变量分析对MCF - 7和阿霉素耐药细胞系进行了代谢组学分析;对MCF - 7/adr培养细胞进行分析,此外,通过给大鼠注射两剂7,12 - 二甲基苯并(a)蒽(DMBA)(50mg/kg和25mg/kg)诱导乳腺癌,随后用阿霉素(5mg/kg)治疗一个月以进一步验证。代谢组学结果指出,甘露醇、肌醇、甘氨酸、α - 亚麻酸、油酸和硬脂酸的AUC值分别为:0.14、0.5、0.7、0.1、0.02、-0.02(1, 1)。甘氨酸和肌醇代谢物在野生型和耐药型MCF - 7表型中具有最佳的鉴别能力。同时,结果显示氧化应激生物标志物以及精氨酸酶II肿瘤生物标志物的变化与ABCA1和P-53基因表达的分子评估之间存在显著的相互作用,除了耐药和凋亡生物标志物EGFR/PI3k/AKT/PTEN信号通路在DMBA给药后明显升高外,ABCA1和P-53基因表达还显著降低。数据显示,阿霉素给药后与耐药相关的信号通路发生了显著变化,这影响了乳腺癌中的脂质代谢。总之,代谢组学与基因组学的综合分析可能有助于理解暴露于阿霉素的MCF - 7乳腺癌细胞中的多药耐药表型,通过调节ABCA1/EGFR/P-53/PI3k/PTEN信号通路,因此代谢生物标志物以及分子生物标志物阐明了乳腺癌有效治疗面临的挑战,以及代谢组学为改善乳腺癌耐药识别所采用的开创性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b6/11780168/1cb9cf6461d6/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验