Suppr超能文献

一种具有光热增强化学动力学活性的肿瘤微环境响应型多功能MoS-Ru纳米催化剂。

A tumor microenvironment-responsive multifunctional MoS-Ru nanocatalyst with photothermally enhanced chemodynamic activity.

作者信息

Sivaselvam S, Anjana R S, Dar Muneer Hussain, Kirthika P, Jayasree Ramapurath S

机构信息

Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.

出版信息

J Mater Chem B. 2025 Feb 26;13(9):3011-3022. doi: 10.1039/d4tb02848a.

Abstract

Targeting the unique characteristics of the tumor microenvironment (TME) has emerged as a highly promising strategy for cancer therapy. Chemodynamic therapy (CDT), which leverages the TME's intrinsic properties to convert HO into cytotoxic hydroxyl radicals (˙OH), has attracted significant attention. However, the effectiveness of CDT is often limited by the catalytic efficiency of the materials used. Although Molybdenum disulfide (MoS) exhibits remarkable chemodynamic and photothermal properties, its limited efficiency in catalyzing the conversion of endogenous HO into ˙OH radicals remains a significant challenge. To overcome this, we developed a nanocomposite of MoS and ruthenium (MoS-Ru), by incorporating Ru into MoS nanosheets. The MoS-Ru nanocomposite demonstrated significantly enhanced catalytic activity at a low concentration (500 ng mL), whereas the same effect was achieved only with 20 μg mL of MoS. The low Michaelis-Menten constant () of 4.69 mM further confirmed the superior catalytic activity of the nanocomposite, indicative of the enhanced enzyme-like activity. Additionally, the integration of Ru in MoS reduced the bandgap to 1.18 eV, facilitating near-infrared (NIR) absorption with a high conversion efficiency of 41%. Electron paramagnetic resonance (EPR) analysis confirmed robust ˙OH radical generation driven by the combined chemodynamic and photothermal effects. studies using triple-negative breast cancer (TNBC) cells validated the synergistic activity of CDT and PTT, demonstrating significant ˙OH radical production under TME conditions, leading to effective cancer cell death. This study underscores the potential of MoS-Ru nanocomposites as a versatile and powerful platform for multimodal cancer therapy, seamlessly integrating CDT and PTT to achieve synergistic, precise, and highly effective treatment outcomes.

摘要

针对肿瘤微环境(TME)的独特特性已成为一种极具前景的癌症治疗策略。化学动力疗法(CDT)利用TME的内在特性将H₂O₂转化为具有细胞毒性的羟基自由基(˙OH),已引起广泛关注。然而,CDT的有效性往往受到所用材料催化效率的限制。尽管二硫化钼(MoS₂)具有显著的化学动力学和光热性质,但其催化内源性H₂O₂转化为˙OH自由基的效率有限,仍然是一个重大挑战。为克服这一问题,我们通过将Ru掺入MoS₂纳米片中,开发了一种MoS₂与钌的纳米复合材料(MoS₂-Ru)。MoS₂-Ru纳米复合材料在低浓度(500 ng/mL)时表现出显著增强的催化活性,而相同效果在MoS₂浓度为20 μg/mL时才能实现。4.69 mM的低米氏常数(Km)进一步证实了该纳米复合材料具有卓越的催化活性,表明其类酶活性增强。此外,Ru掺入MoS₂使带隙降至1.18 eV,促进近红外(NIR)吸收,转换效率高达41%。电子顺磁共振(EPR)分析证实了化学动力学和光热效应共同驱动产生了大量的˙OH自由基。使用三阴性乳腺癌(TNBC)细胞的研究验证了CDT和PTT的协同活性,证明在TME条件下能产生大量˙OH自由基,导致癌细胞有效死亡。本研究强调了MoS₂-Ru纳米复合材料作为一种多功能且强大的多模态癌症治疗平台的潜力,无缝整合CDT和PTT以实现协同、精确且高效的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验