Demissie Girum Getachew, Chen Yi-Chia, Ciou Sin-Yi, Hsu Shih-Hao, Wang Chen-Yow, Huang Chih-Ching, Chang Huan-Tsung, Lee Yu-Cheng, Chang Jia-Yaw
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan.
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110 Taiwan.
J Colloid Interface Sci. 2025 May;685:396-414. doi: 10.1016/j.jcis.2025.01.149. Epub 2025 Jan 20.
Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione. Under acidic conditions, HPTZMoS NBs facilitate the release of sulfide ions (S) and TPZ, providing a combination of chemotherapy (CT) and hydrogen sulfide (HS) gas therapy (GT). Under an 808-nm NIR laser irradiation, the HPTZMoS NBs efficiently convert photo energy to thermal energy, providing PTT and improved CDT, CT, and GT effects. Upon treatment with an NIR laser and HO, a synergistic effect leads to substantial tumor cell eradication. Additionally, HPTZMoS NBs disrupt vascular endothelial growth factor (VEGF-A)-induced cell migration in human umbilical vein endothelial cells through its strong interaction with VEGF-A. In vivo studies in 4T1-tumor-bearing mice confirm that HPTZMoS NBs induces significant tumor destruction through a combination of PTT, hyperthermia-induced CDT, GT, and CT pathways. This study presents a multifaceted, highly selective nanotherapy platform with potent anti-angiogenesis properties, holding significant promise for future clinical applications.
使用对热和肿瘤微环境有响应的试剂进行光热疗法(PTT)在癌症治疗方面具有广阔前景。本研究展示了一种有效的PTT纳米药物,它由中空结构、热敏性聚多巴胺纳米碗(HPDA NB)、硫化钼(MoS)纳米酶和替拉扎明(TPZ;一种对缺氧有响应的药物)组成,其结构为HPDA@TPZ/MoS NBs,以下简称为HPTZMoS NBs。凭借类芬顿活性,在HO存在的情况下,HPTZMoS NBs催化形成羟基自由基,提供化学动力学疗法(CDT)效果并使谷胱甘肽失活。在酸性条件下,HPTZMoS NBs促进硫离子(S)和TPZ的释放,提供化疗(CT)和硫化氢(HS)气体疗法(GT)的联合作用。在808纳米近红外激光照射下,HPTZMoS NBs有效地将光能转化为热能,提供PTT并增强CDT、CT和GT效果。在用近红外激光和HO处理后,协同效应导致大量肿瘤细胞被根除。此外,HPTZMoS NBs通过与血管内皮生长因子(VEGF - A)的强烈相互作用,破坏VEGF - A诱导的人脐静脉内皮细胞迁移。在4T1荷瘤小鼠体内的研究证实,HPTZMoS NBs通过PTT、热诱导CDT、GT和CT途径的联合作用诱导显著的肿瘤破坏。本研究提出了一个具有多方面特性、高度选择性且具有强大抗血管生成特性的纳米治疗平台,对未来临床应用具有重大前景。