Suppr超能文献

用于宏观尺度上纳米颗粒绝对定量及估计其数浓度的光学显微镜与深度学习

Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration.

作者信息

Hlaváček Antonín, Uhrová Kateřina, Weisová Julie, Brožková Hana, Pizúrová Naděžda

机构信息

Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic.

Department of Chemistry, Faculty of Science, Masaryk University, Brno 602 00, Czech Republic.

出版信息

Anal Chem. 2025 Feb 11;97(5):2588-2592. doi: 10.1021/acs.analchem.4c05555. Epub 2025 Jan 31.

Abstract

We present a simplistic and absolute method for estimating the number concentration of nanoparticles. Macroscopic volumes of a nanoparticle dispersion (several μL) are dropped on a glass surface and the solvent is evaporated. The optical microscope scans the entire surface of the dried droplet (several mm), micrographs are stitched together (several tens), and all nanoparticles are counted (several thousand per droplet) by using an artificial neural network. We call this method evaporated volume analysis (EVA) because nanoparticles are counted after droplet volume evaporation. As a model, the concentration of ∼60 nm Tm-doped photon-upconversion nanoparticles coated in carboxylated silica shells is estimated with a combined relative standard uncertainty of 2.7%. Two reference methods provided comparable concentration values. A wider applicability is tested by imaging ∼80 nm Nile red-doped polystyrene and ∼90 nm silver nanoparticles. Theoretical limits of EVA such as the limit of detection, limit of quantification, and optimal working range are discussed.

摘要

我们提出了一种简单且绝对的方法来估算纳米颗粒的数量浓度。将宏观体积的纳米颗粒分散液(几微升)滴在玻璃表面,然后蒸发溶剂。光学显微镜扫描干燥液滴的整个表面(几毫米),拼接显微照片(几十张),并使用人工神经网络对所有纳米颗粒进行计数(每个液滴数千个)。我们将此方法称为蒸发体积分析(EVA),因为纳米颗粒是在液滴体积蒸发后进行计数的。作为一个模型,对包覆有羧基化二氧化硅壳的约60 nm掺铥光子上转换纳米颗粒的浓度进行了估算,其合成相对标准不确定度为2.7%。两种参考方法给出了可比的浓度值。通过对约80 nm尼罗红掺杂的聚苯乙烯和约90 nm银纳米颗粒成像,测试了EVA更广泛的适用性。讨论了EVA的理论极限,如检测限、定量限和最佳工作范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72de/11822731/5552092cf334/ac4c05555_0003.jpg

相似文献

4
Upconversion Luminescence of Silica-Calcia Nanoparticles Co-doped with Tm and Yb Ions.
Materials (Basel). 2021 Feb 16;14(4):937. doi: 10.3390/ma14040937.
6
Controlling Droplet Marangoni Flows to Improve Microscopy-Based TB Diagnosis.
Diagnostics (Basel). 2021 Nov 21;11(11):2155. doi: 10.3390/diagnostics11112155.

本文引用的文献

1
Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging.
Anal Chem. 2022 Dec 27;94(51):18114-18120. doi: 10.1021/acs.analchem.2c05216. Epub 2022 Dec 13.
3
Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging.
Nat Protoc. 2022 Apr;17(4):1028-1072. doi: 10.1038/s41596-021-00670-7. Epub 2022 Feb 18.
4
Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited].
Biomed Opt Express. 2020 Feb 27;11(3):1633-1661. doi: 10.1364/BOE.386361. eCollection 2020 Mar 1.
5
Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review.
Micromachines (Basel). 2017 Jun 25;8(7):204. doi: 10.3390/mi8070204.
6
Preventing the coffee-ring effect and aggregate sedimentation by gelation of monodisperse materials.
Chem Sci. 2018 Aug 23;9(39):7596-7605. doi: 10.1039/c8sc03302a. eCollection 2018 Oct 21.
7
Rapid and Quantitative Measurement of Single Quantum Dots in a Sheath Flow Cuvette.
Anal Chem. 2017 Sep 19;89(18):9857-9863. doi: 10.1021/acs.analchem.7b01885. Epub 2017 Aug 29.
8
Immobilized Particle Imaging for Quantification of Nano- and Microparticles.
Langmuir. 2016 Apr 12;32(14):3532-40. doi: 10.1021/acs.langmuir.6b00229. Epub 2016 Mar 31.
9
Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.
Opt Express. 2015 Dec 14;23(25):32859-68. doi: 10.1364/OE.23.032859.
10
Nanoparticle counting: towards accurate determination of the molar concentration.
Chem Soc Rev. 2014 Nov 7;43(21):7267-78. doi: 10.1039/c4cs00128a. Epub 2014 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验